Do you want to publish a course? Click here

Role of Future Lepton Colliders for Fermionic Z-portal Dark Matter

151   0   0.0 ( 0 )
 Added by Taisuke Katayose
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The fermionic Z-portal dark matter model suffers from severe constraints from direct detection experiments. However, a narrow parameter space around the Z-funnel region is beyond the reach due to the resonance annihilation. In this paper, we provide an intriguing collider prospect for probing the Z-funnel dark matter mass range at the future lepton colliders including the beam polarization feature. We have done a comprehensive analysis for mono-photon signal at the colliders for such a dark matter. A realistic estimation for the 90% C.L. constraints with the systematic beam uncertainties has also been provided.

rate research

Read More

The leptophilic weakly interacting massive particle (WIMP) is realized in a minimal renormalizable model scenario where scalar mediators with lepton number establish the WIMP interaction with the standard model (SM) leptons. We perform a comprehensive analysis for such a WIMP scenario for two distinct cases with an SU(2) doublet or singlet mediator considering all the relevant theoretical, cosmological and experimental constraints at present. We show that the mono-photon search at near-future lepton collider experiments (ILC, FCC-ee, CEPC, etc.) can play a significant role to probe the yet unexplored parameter range allowed by the WIMP relic density constraint. This will complement the search prospect at the near-future hadron collider experiment (HL-LHC). Furthermore, we discuss the combined model scenario including both the doublet and singlet mediator. The combined model is capable of explaining the long-standing muon (g-2) anomaly which is an additional advantage. We demonstrate that the allowed region for anomalous muon (g-2) explanation, which has been updated very recently at Fermi National Accelerator Laboratory, can also be probed at the future colliders which will thus be a simultaneous authentication of the model scenario.
New physics close to the electroweak scale is well motivated by a number of theoretical arguments. However, colliders, most notably the Large Hadron Collider (LHC), have failed to deliver evidence for physics beyond the Standard Model. One possibility for how new electroweak-scale particles could have evaded detection so far is if they carry only electroweak charge, i.e. are color neutral. Future $e^+e^-$ colliders are prime tools to study such new physics. Here, we investigate the sensitivity of $e^+e^-$ colliders to scalar partners of the charged leptons, known as sleptons in supersymmetric extensions of the Standard Model. In order to allow such scalar lepton partners to decay, we consider models with an additional neutral fermion, which in supersymmetric models corresponds to a neutralino. We demonstrate that future $e^+e^-$ colliders would be able to probe most of the kinematically accessible parameter space, i.e. where the mass of the scalar lepton partner is less than half of the colliders center-of-mass energy, with only a few days of data. Besides constraining more general models, this would allow to probe some well motivated dark matter scenarios in the Minimal Supersymmetric Standard Model, in particular the incredible bulk and stau co-annihilation scenarios.
We examine the possibility that dark matter (DM) consists of a gapped continuum, rather than ordinary particles. A Weakly-Interacting Continuum (WIC) model, coupled to the Standard Model via a Z-portal, provides an explicit realization of this idea. The thermal DM relic density in this model is naturally consistent with observations, providing a continuum counterpart of the WIMP miracle. Direct detection cross sections are strongly suppressed compared to ordinary Z-portal WIMP, thanks to a unique effect of the continuum kinematics. Continuum DM states decay throughout the history of the universe, and observations of cosmic microwave background place constraints on potential late decays. Production of WICs at colliders can provide a striking cascade-decay signature. We show that a simple Z-portal WIC model with the gap scale between 40 and 110 GeV provides a fully viable DM candidate consistent with all current experimental constraints.
111 - Shohei Okawa , Yuji Omura 2020
We explore a novel possibility that dark matter has a light mass below 1GeV in a lepton portal dark matter model. There are Yukawa couplings involving dark matter, left-handed leptons and an extra scalar doublet in the model. In the light mass region, dark matter is thermally produced via its annihilation into neutrinos. In order to obtain the correct relic abundance and avoid collider bounds, a neutral scalar is required to be light while charged scalars need to be heavier than the electroweak scale. Such a mass spectrum is realized by adjusting quartic couplings in the scalar potential or introducing an extra singlet scalar. It turns out that the mass region of 10MeV-10GeV is almost free from experimental and observational constraints. We also point out that searches for extra neutrino flux from galactic dark matter annihilations with neutrino telescopes are the best way to test our model.
We argue that extensions of the SM with a warped extra dimension, together with a new $mathbb{Z}_2$-odd scalar singlet, provide a natural explanation not only for the hierarchy problem but also for the nature of fermion bulk masses and the observed dark matter relic abundance. In particular, the Kaluza-Klein excitations of the new scalar particle, which is required to naturally obtain fermion bulk masses through Yukawa-like interactions, can be the leading portal to any fermion propagating into the bulk of the extra dimension and playing the role of dark matter. Moreover, such scalar excitations will necessarily mix with the Higgs boson, leading to modifications of the Higgs couplings and branching ratios, and allowing the Higgs to mediate the coannihilation of the fermionic dark matter. We study these effects and explore the viability of fermionic dark matter in the presence of these new heavy scalar mediators both in the usual freeze-out scenario and in the case where the freeze-out happens during an early period of matter domination.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا