Batalin-Vilkovisky formalism in the $p$-adic Dwork theory


Abstract in English

The goal of this article is to develop BV (Batalin-Vilkovisky) formalism in the $p$-adic Dwork theory. Based on this formalism, we explicitly construct a $p$-adic dGBV algebra (differential Gerstenhaber-Batalin-Vilkovisky algebra) for a smooth projective complete intersection variety $X$ over a finite field, whose cohomology gives the $p$-adic Dwork cohomology of $X$, and its cochain endomorphism (the $p$-adic Dwork Frobenius operator) which encodes the information of the zeta function $X$. As a consequence, we give a modern deformation theoretic interpretation of Dworks theory of the zeta function of $X$ and derive a formula for the $p$-adic Dwork Frobenius operator in terms of homotopy Lie morphisms and the Bell polynomials.

Download