Do you want to publish a course? Click here

Angular memory effect of transmission eigenchannels

134   0   0.0 ( 0 )
 Added by Hasan Y{\\i}lmaz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The optical memory effect has emerged as a powerful tool for imaging through multiple-scattering media; however, the finite angular range of the memory effect limits the field of view. Here, we demonstrate experimentally that selective coupling of incident light into a high-transmission channel increases the angular memory-effect range. This enhancement is attributed to the robustness of the high-transmission channels against perturbations such as sample tilt or wavefront tilt. Our work shows that the high-transmission channels provide an enhanced field of view for memory effect-based imaging through diffusive media.



rate research

Read More

Transmission eigenchannels are building blocks of coherent wave transport in diffusive media, and selective excitation of individual eigenchannels can lead to diverse transport behavior. An essential yet poorly understood property is the transverse spatial profile of each eigenchannel, which is critical for coupling into and out of it. Here, we discover that the transmission eigenchannels of a disordered slab possess localized incident and outgoing profiles, even in the diffusive regime far from Anderson localization. Such transverse localization arises from a combination of reciprocity, local coupling of spatial modes, and nonlocal correlations of scattered waves. Experimentally, we observe signatures of such localization despite finite illumination area. Our results reveal the intrinsic characteristics of transmission eigenchannels in the open slab geometry, commonly used for applications in imaging and energy transfer through turbid media.
Transmission eigenchannels and associated eigenvalues, that give a full account of wave propagation in random media, have recently emerged as a major theme in theoretical and applied optics. Here we demonstrate, both analytically and numerically, that in quasi one-dimensional ($1$D) diffusive samples, their behavior is governed mostly by the asymmetry in the reflections of the sample edges rather than by the absolute values of the reflection coefficients themselves. We show that there exists a threshold value of the asymmetry parameter, below which high transmission eigenchannels exist, giving rise to a singularity in the distribution of the transmission eigenvalues, $rho({cal T}rightarrow 1)sim(1-{cal T})^{-frac{1}{2}}$. At the threshold, $rho({cal T})$ exhibits critical statistics with a distinct singularity $sim(1-{cal T})^{-frac{1}{3}}$; above it the high transmission eigenchannels disappear and $rho({cal T})$ vanishes for ${cal T}$ exceeding a maximal transmission eigenvalue. We show that such statistical behavior of the transmission eigenvalues can be explained in terms of effective cavities (resonators), analogous to those in which the states are trapped in $1$D strong Anderson localization. In particular, the $rho ( mathcal{T}) $-transition can be mapped onto the shuffling of the resonator with perfect transmittance from the sample center to the edge with stronger reflection. We also find a similar transition in the distribution of resonant transmittances in $1$D layered samples. These results reveal a physical connection between high transmission eigenchannels in diffusive systems and $1$D strong Anderson localization. They open up a fresh opportunity for practically useful application: controlling the transparency of opaque media by tuning their coupling to the environment.
High resolution optical microscopy is essential in neuroscience but suffers from scattering in biological tissues. It therefore grants access to superficial layers only. Recently developed techniques use scattered photons for imaging by exploiting angular correlations in transmitted light and could potentially increase imaging depths. But those correlations (`angular memory effect) are of very short range and, in theory, only present behind and not inside scattering media. From measurements on neural tissues and complementary simulations, we find that strong forward scattering in biological tissues can enhance the memory effect range (and thus the possible field-of-view) by more than an order of magnitude compared to isotropic scattering for $sim$1,mm thick tissue layers.
We study the electromagnetic transmission $T$ through one-dimensional (1D) photonic heterostructures whose random layer thicknesses follow a long-tailed distribution --Levy-type distribution. Based on recent predictions made for 1D coherent transport with Levy-type disorder, we show numerically that for a system of length $L$ (i) the average $<-ln T> propto L^alpha$ for $0<alpha<1$, while $<-ln T> propto L$ for $1lealpha<2$, $alpha$ being the exponent of the power-law decay of the layer-thickness probability distribution; and (ii) the transmission distribution $P(T)$ is independent of the angle of incidence and frequency of the electromagnetic wave, but it is fully determined by the values of $alpha$ and $<ln T>$.
We demonstrate that optical transmission matrices (TM) of disordered complex media provide a powerful tool to extract the photonic interaction strength, independent of surface effects. We measure TM of strongly scattering GaP nanowires and plot the singular value density of the measured matrices and a random matrix model. By varying the free parameters of the model, the transport mean free path and effective refractive index, we retrieve the photonic interaction strength. From numerical simulations we conclude that TM statistics is hardly sensitive to surface effects, in contrast to enhanced backscattering or total transmission based methods.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا