Learning Instance Occlusion for Panoptic Segmentation


Abstract in English

Panoptic segmentation requires segments of both things (countable object instances) and stuff (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for things) and semantic segmentation (for stuff) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do not correlate well with natural occlusion relationship. To resolve this issue, we propose a branch that is tasked with modeling how two instance masks should overlap one another as a binary relation. Our method, named OCFusion, is lightweight but particularly effective in the instance fusion process. OCFusion is trained with the ground truth relation derived automatically from the existing dataset annotations. We obtain state-of-the-art results on COCO and show competitive results on the Cityscapes panoptic segmentation benchmark.

Download