In this note, we show how to obtain a characteristic power series of graphons -- infinite limits of dense graphs -- as the limit of normalized reciprocal characteristic polynomials. This leads to a new characterization of graph quasi-randomness and another perspective on spectral theory for graphons, a complete description of the function in terms of the spectrum of the graphon as a self-adjoint kernel operator. Interestingly, while we apply a standard regularization to classical determinants, it is unclear how necessary this is.