Do you want to publish a course? Click here

Proximity magnetoresistance in graphene induced by magnetic insulators

244   0   0.0 ( 0 )
 Added by Mairbek Chshiev
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the existence of Giant proximity magnetoresistance (PMR) effect in a graphene spin valve where spin polarization is induced by a nearby magnetic insulator. PMR calculations were performed for yttrium iron garnet (YIG), cobalt ferrite (CFO), and two europium chalcogenides EuO and EuS. We find a significant PMR (up to 100%) values defined as a relative change of graphene conductance with respect to parallel and antiparallel alignment of two proximity induced magnetic regions within graphene. Namely, for high Curie temperature (Tc) CFO and YIG insulators which are particularly important for applications, we obtain 22% and 77% at room temperature, respectively. For low Tc chalcogenides, EuO and EuS, the PMR is 100% in both cases. Furthermore, the PMR is robust with respect to system dimensions and edge type termination. Our findings show that it is possible to induce spin polarized currents in graphene with no direct injection through magnetic materials.



rate research

Read More

We theoretically study the magnetoresistance (MR) of two-dimensional massless Dirac electrons as found on the surface of three-dimensional topological insulators (3D TIs) that is capped by a ferromagnetic insulator (FI). We calculate charge and spin transport by Kubo and Boltzmann theories, taking into account the ladder-vertex correction and the in-scattering due to normal and magnetic disorder. The induced exchange splitting is found to generate an electric conductivity that depends on the magnetization orientation, but its form is very different from both the anisotropic and spin Hall MR. The in-plane MR vanishes identically for non-magnetic disorder, while out-of-plane magnetizations cause a large MR ratio. On the other hand, we do find an in-plane MR and planar Hall effect in the presence of magnetic disorder aligned with the FI magnetization. Our results may help understand recent transport measurements on TI|FI systems.
72 - Yang Peng , Yong Xu 2018
We propose a realization of chiral Majorana modes propagating on the hinges of a 3D antiferromagnetic topological insulator, which was recently theoretically predicted and experimentally confirmed in the tetradymite-type $mathrm{MnBi_2Te_4}$-related ternary chalgogenides. These materials consist of ferromagnetically ordered 2D layers, whose magnetization direction alternates between neighboring layers, forming an antiferromagnetic order. Besides surfaces with a magnetic gap, there also exsist gapless surfaces with a single Dirac cone, which can be gapped out when proximity coupled to an $s$-wave superconductor. On the sharing edges between the two types of gapped surfaces, the chiral Majorana modes emerge. We further propose experimental signatures of these Majoana hinge modes in terms of two-terminal conductance measurements.
Twisted bilayer graphene (TBG) exhibits fascinating correlation-driven phenomena like the superconductivity and Mott insulating state, with flat bands and a chiral lattice structure. We find by quantum transport calculations that the chirality leads to a giant unidirectional magnetoresistance (UMR) in TBG, where the unidirectionality refers to the resistance change under the reversal of the direction of the current or magnetic field. We point out that flat bands significantly enhance this effect. The UMR increases quickly upon reducing the twist angle and reaches about 20% for an angle of 1.5$^circ$ in a 10 T in-plane magnetic field. We propose the band structure topology (asymmetry), which leads to a direction-sensitive mean free path, as a useful way to anticipate the UMR effect. The UMR provides a probe for chirality and band flatness in the twisted bilayers.
We propose a way of making graphene superconductive by putting on it small superconductive islands which cover a tiny fraction of graphene area. We show that the critical temperature, T_c, can reach several Kelvins at the experimentally accessible range of parameters. At low temperatures, T<<T_c, and zero magnetic field, the density of states is characterized by a small gap E_g<T_c resulting from the collective proximity effect. Transverse magnetic field H_g(T) E_g is expected to destroy the spectral gap driving graphene layer to a kind of a superconductive glass state. Melting of the glass state into a metal occurs at a higher field H_{g2}(T).
153 - E. H. Hwang , S. Das Sarma 2008
We develop a theory for graphene magnetotransport in the presence of carrier spin polarization as induced, for example, by the application of an in-plane magnetic field ($B$) parallel to the 2D graphene layer. We predict a negative magnetoresistance $sigma propto B^2$ for intrinsic graphene, but for extrinsic graphene we find a non-monotonic magnetoresistance which is positive at lower magnetic fields (below the full spin-polarization) and negative at very high fields (above the full spin-polarization). The conductivity of the minority spin band $(-)$ electrons does not vanish as the minority carrier density ($n_-$) goes to zero. The residual conductivity of $(-)$ electrons at $n_- = 0$ is unique to graphene. We discuss experimental implications of our theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا