Do you want to publish a course? Click here

Quantifying Intrinsic Uncertainty in Classification via Deep Dirichlet Mixture Networks

113   0   0.0 ( 0 )
 Added by Qingyang Wu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

With the widespread success of deep neural networks in science and technology, it is becoming increasingly important to quantify the uncertainty of the predictions produced by deep learning. In this paper, we introduce a new method that attaches an explicit uncertainty statement to the probabilities of classification using deep neural networks. Precisely, we view that the classification probabilities are sampled from an unknown distribution, and we propose to learn this distribution through the Dirichlet mixture that is flexible enough for approximating any continuous distribution on the simplex. We then construct credible intervals from the learned distribution to assess the uncertainty of the classification probabilities. Our approach is easy to implement, computationally efficient, and can be coupled with any deep neural network architecture. Our method leverages the crucial observation that, in many classification applications such as medical diagnosis, more than one class labels are available for each observational unit. We demonstrate the usefulness of our approach through simulations and a real data example.



rate research

Read More

Traditional deep neural nets (NNs) have shown the state-of-the-art performance in the task of classification in various applications. However, NNs have not considered any types of uncertainty associated with the class probabilities to minimize risk due to misclassification under uncertainty in real life. Unlike Bayesian neural nets indirectly infering uncertainty through weight uncertainties, evidential neural networks (ENNs) have been recently proposed to support explicit modeling of the uncertainty of class probabilities. It treats predictions of an NN as subjective opinions and learns the function by collecting the evidence leading to these opinions by a deterministic NN from data. However, an ENN is trained as a black box without explicitly considering different types of inherent data uncertainty, such as vacuity (uncertainty due to a lack of evidence) or dissonance (uncertainty due to conflicting evidence). This paper presents a new approach, called a {em regularized ENN}, that learns an ENN based on regularizations related to different characteristics of inherent data uncertainty. Via the experiments with both synthetic and real-world datasets, we demonstrate that the proposed regularized ENN can better learn of an ENN modeling different types of uncertainty in the class probabilities for classification tasks.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural networks prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
One of the key challenges of performing label prediction over a data stream concerns with the emergence of instances belonging to unobserved class labels over time. Previously, this problem has been addressed by detecting such instances and using them for appropriate classifier adaptation. The fundamental aspect of a novel-class detection strategy relies on the ability of comparison among observed instances to discriminate them into known and unknown classes. Therefore, studies in the past have proposed various metrics suitable for comparison over the observed feature space. Unfortunately, these similarity measures fail to reliably identify distinct regions in observed feature spaces useful for class discrimination and novel-class detection, especially in streams containing high-dimensional data instances such as images and texts. In this paper, we address this key challenge by proposing a semi-supervised multi-task learning framework called sysname{} which aims to intrinsically search for a latent space suitable for detecting labels of instances from both known and unknown classes. We empirically measure the performance of sysname{} over multiple real-world image and text datasets and demonstrate its superiority by comparing its performance with existing semi-supervised methods.
The uncertainty measurement of classifiers predictions is especially important in applications such as medical diagnoses that need to ensure limited human resources can focus on the most uncertain predictions returned by machine learning models. However, few existing uncertainty models attempt to improve overall prediction accuracy where human resources are involved in the text classification task. In this paper, we propose a novel neural-network-based model that applies a new dropout-entropy method for uncertainty measurement. We also design a metric learning method on feature representations, which can boost the performance of dropout-based uncertainty methods with smaller prediction variance in accurate prediction trials. Extensive experiments on real-world data sets demonstrate that our method can achieve a considerable improvement in overall prediction accuracy compared to existing approaches. In particular, our model improved the accuracy from 0.78 to 0.92 when 30% of the most uncertain predictions were handed over to human experts in 20NewsGroup data.
106 - Beomseok Seo , Lin Lin , 2021
Deep neural network (DNN) models have achieved phenomenal success for applications in many domains, ranging from academic research in science and engineering to industry and business. The modeling power of DNN is believed to have come from the complexity and over-parameterization of the model, which on the other hand has been criticized for the lack of interpretation. Although certainly not true for every application, in some applications, especially in economics, social science, healthcare industry, and administrative decision making, scientists or practitioners are resistant to use predictions made by a black-box system for multiple reasons. One reason is that a major purpose of a study can be to make discoveries based upon the prediction function, e.g., to reveal the relationships between measurements. Another reason can be that the training dataset is not large enough to make researchers feel completely sure about a purely data-driven result. Being able to examine and interpret the prediction function will enable researchers to connect the result with existing knowledge or gain insights about new directions to explore. Although classic statistical models are much more explainable, their accuracy often falls considerably below DNN. In this paper, we propose an approach to fill the gap between relatively simple explainable models and DNN such that we can more flexibly tune the trade-off between interpretability and accuracy. Our main idea is a mixture of discriminative models that is trained with the guidance from a DNN. Although mixtures of discriminative models have been studied before, our way of generating the mixture is quite different.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا