Do you want to publish a course? Click here

Recognizing License Plates in Real-Time

82   0   0.0 ( 0 )
 Added by Xuewen Yang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

License plate detection and recognition (LPDR) is of growing importance for enabling intelligent transportation and ensuring the security and safety of the cities. However, LPDR faces a big challenge in a practical environment. The license plates can have extremely diverse sizes, fonts and colors, and the plate images are usually of poor quality caused by skewed capturing angles, uneven lighting, occlusion, and blurring. In applications such as surveillance, it often requires fast processing. To enable real-time and accurate license plate recognition, in this work, we propose a set of techniques: 1) a contour reconstruction method along with edge-detection to quickly detect the candidate plates; 2) a simple zero-one-alternation scheme to effectively remove the fake top and bottom borders around plates to facilitate more accurate segmentation of characters on plates; 3) a set of techniques to augment the training data, incorporate SIFT features into the CNN network, and exploit transfer learning to obtain the initial parameters for more effective training; and 4) a two-phase verification procedure to determine the correct plate at low cost, a statistical filtering in the plate detection stage to quickly remove unwanted candidates, and the accurate CR results after the CR process to perform further plate verification without additional processing. We implement a complete LPDR system based on our algorithms. The experimental results demonstrate that our system can accurately recognize license plate in real-time. Additionally, it works robustly under various levels of illumination and noise, and in the presence of car movement. Compared to peer schemes, our system is not only among the most accurate ones but is also the fastest, and can be easily applied to other scenarios.

rate research

Read More

Style transfer aims to combine the content of one image with the artistic style of another. It was discovered that lower levels of convolutional networks captured style information, while higher levels captures content information. The original style transfer formulation used a weighted combination of VGG-16 layer activations to achieve this goal. Later, this was accomplished in real-time using a feed-forward network to learn the optimal combination of style and content features from the respective images. The first aim of our project was to introduce a framework for capturing the style from several images at once. We propose a method that extends the original real-time style transfer formulation by combining the features of several style images. This method successfully captures color information from the separate style images. The other aim of our project was to improve the temporal style continuity from frame to frame. Accordingly, we have experimented with the temporal stability of the output images and discussed the various available techniques that could be employed as alternatives.
Recognizing car license plates in natural scene images is an important yet still challenging task in realistic applications. Many existing approaches perform well for license plates collected under constrained conditions, eg, shooting in frontal and horizontal view-angles and under good lighting conditions. However, their performance drops significantly in an unconstrained environment that features rotation, distortion, occlusion, blurring, shading or extreme dark or bright conditions. In this work, we propose a robust framework for license plate recognition in the wild. It is composed of a tailored CycleGAN model for license plate image generation and an elaborate designed image-to-sequence network for plate recognition. On one hand, the CycleGAN based plate generation engine alleviates the exhausting human annotation work. Massive amount of training data can be obtained with a more balanced character distribution and various shooting conditions, which helps to boost the recognition accuracy to a large extent. On the other hand, the 2D attentional based license plate recognizer with an Xception-based CNN encoder is capable of recognizing license plates with different patterns under various scenarios accurately and robustly. Without using any heuristics rule or post-processing, our method achieves the state-of-the-art performance on four public datasets, which demonstrates the generality and robustness of our framework. Moreover, we released a new license plate dataset, named CLPD, with 1200 images from all 31 provinces in mainland China. The dataset can be available from: https://github.com/wangpengnorman/CLPD_dataset.
Biometric recognition on partial captured targets is challenging, where only several partial observations of objects are available for matching. In this area, deep learning based methods are widely applied to match these partial captured objects caused by occlusions, variations of postures or just partial out of view in person re-identification and partial face recognition. However, most current methods are not able to identify an individual in case that some parts of the object are not obtainable, while the rest are specialized to certain constrained scenarios. To this end, we propose a robust general framework for arbitrary biometric matching scenarios without the limitations of alignment as well as the size of inputs. We introduce a feature post-processing step to handle the feature maps from FCN and a dictionary learning based Spatial Feature Reconstruction (SFR) to match different sized feature maps in this work. Moreover, the batch hard triplet loss function is applied to optimize the model. The applicability and effectiveness of the proposed method are demonstrated by the results from experiments on three person re-identification datasets (Market1501, CUHK03, DukeMTMC-reID), two partial person datasets (Partial REID and Partial iLIDS) and two partial face datasets (CASIA-NIR-Distance and Partial LFW), on which state-of-the-art performance is ensured in comparison with several state-of-the-art approaches. The code is released online and can be found on the website: https://github.com/lingxiao-he/Partial-Person-ReID.
Artistic style transfer is the problem of synthesizing an image with content similar to a given image and style similar to another. Although recent feed-forward neural networks can generate stylized images in real-time, these models produce a single stylization given a pair of style/content images, and the user doesnt have control over the synthesized output. Moreover, the style transfer depends on the hyper-parameters of the model with varying optimum for different input images. Therefore, if the stylized output is not appealing to the user, she/he has to try multiple models or retrain one with different hyper-parameters to get a favorite stylization. In this paper, we address these issues by proposing a novel method which allows adjustment of crucial hyper-parameters, after the training and in real-time, through a set of manually adjustable parameters. These parameters enable the user to modify the synthesized outputs from the same pair of style/content images, in search of a favorite stylized image. Our quantitative and qualitative experiments indicate how adjusting these parameters is comparable to retraining the model with different hyper-parameters. We also demonstrate how these parameters can be randomized to generate results which are diverse but still very similar in style and content.
Interlacing is a widely used technique, for television broadcast and video recording, to double the perceived frame rate without increasing the bandwidth. But it presents annoying visual artifacts, such as flickering and silhouette serration, during the playback. Existing state-of-the-art deinterlacing methods either ignore the temporal information to provide real-time performance but lower visual quality, or estimate the motion for better deinterlacing but with a trade-off of higher computational cost. In this paper, we present the first and novel deep convolutional neural networks (DCNNs) based method to deinterlace with high visual quality and real-time performance. Unlike existing models for super-resolution problems which relies on the translation-invariant assumption, our proposed DCNN model utilizes the temporal information from both the odd and even half frames to reconstruct only the missing scanlines, and retains the given odd and even scanlines for producing the full deinterlaced frames. By further introducing a layer-sharable architecture, our system can achieve real-time performance on a single GPU. Experiments shows that our method outperforms all existing methods, in terms of reconstruction accuracy and computational performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا