Do you want to publish a course? Click here

Making sense of the divergent series for reconstructing a Hamiltonian from its eigenstates and eigenvalues

60   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In quantum mechanics the eigenstates of the Hamiltonian form a complete basis. However, physicists conventionally express completeness as a formal sum over the eigenstates, and this sum is typically a divergent series if the Hilbert space is infinite dimensional. Furthermore, while the Hamiltonian can be reconstructed formally as a sum over its eigenvalues and eigenstates, this series is typically even more divergent. For the simple cases of the square-well and the harmonic-oscillator potentials this paper explains how to use the elementary procedure of Euler summation to sum these divergent series and thereby to make sense of the formal statement of the completeness of the formal sum that represents the reconstruction of the Hamiltonian.



rate research

Read More

102 - Zhiyong Zhang 2020
We present quantum algorithms, for Hamiltonians of linear combinations of local unitary operators, for Hamiltonian matrix-vector products and for preconditioning with the inverse of shifted reduced Hamiltonian operator that contributes to the diagonal matrix elements only. The algorithms implement a convergent series of approximations towards the exact solution of the full CI (configuration interaction) problem. The algorithm scales with O(m^5 ), with m the number of one-electron orbitals in the case of molecular electronic structure calculations. Full CI results can be obtained with a scaling of O(nm^5 ), with n the number of electrons and a prefactor on the order of 10 to 20. With low orders of Hamiltonian matrix-vector products, a whole repertoire of approximations widely used in modern electronic structure theory, including various orders of perturbation theory and/or truncated CI at different orders of excitations can be implemented for quantum computing for both routine and benchmark results at chemical accuracy. The lowest order matrix-vector product with preconditioning, basically the second-order perturbation theory, is expected to be a leading algorithm for demonstrating quantum supremacy for Ab Initio simulations, one of the most anticipated real world applications. The algorithm is also applicable for the hybrid variational quantum eigensolver.
We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent distribution associated with eigenstate inputs as a new post-processing tool. By connecting it with the unknown phase, we find that if used as its direct estimator, it exceeds the accuracy of the standard majority rule using one less bit of resolution, making evident that it can also be inverted to provide unbiased estimation. Moreover, we show how to directly use this quantity to accurately find the energy levels when the initialized state is an eigenstate of the simulated propagator during the whole time evolution, which allows for shallower algorithms. We then use IBM Q hardware to carry out the digital quantum simulation of three toy models: a two-level system, a two-spin Ising model and a two-site Hubbard model at half-filling. Methodologies are provided to implement Trotterization and reduce the variability of results in noisy intermediate scale quantum computers.
In this work we present a detailed analysis of variational quantum phase estimation (VQPE), a method based on real-time evolution for ground and excited state estimation on near-term hardware. We derive the theoretical ground on which the approach stands, and demonstrate that it provides one of the most compact variational expansions to date for solving strongly correlated Hamiltonians. At the center of VQPE lies a set of equations, with a simple geometrical interpretation, which provides conditions for the time evolution grid in order to decouple eigenstates out of the set of time evolved expansion states, and connects the method to the classical filter diagonalization algorithm. Further, we introduce what we call the unitary formulation of VQPE, in which the number of matrix elements that need to be measured scales linearly with the number of expansion states, and we provide an analysis of the effects of noise which substantially improves previous considerations. The unitary formulation allows for a direct comparison to iterative phase estimation. Our results mark VQPE as both a natural and highly efficient quantum algorithm for ground and excited state calculations of general many-body systems. We demonstrate a hardware implementation of VQPE for the transverse field Ising model. Further, we illustrate its power on a paradigmatic example of strong correlation (Cr2 in the SVP basis set), and show that it is possible to reach chemical accuracy with as few as ~50 timesteps.
250 - Leonhard Euler 2018
This is the translation of Leonhard Eulers paper De Seriebus divergentibus written in Latin into English. Leonhard Euler defines and discusses divergent series. He is especially interested in the example $1!-2!+3!-text{etc.}$ and uses different methods to sum it. He finds a value of about $0.59...$.
We present a simple yet effective approach for learning word sense embeddings. In contrast to existing techniques, which either directly learn sense representations from corpora or rely on sense inventories from lexical resources, our approach can induce a sense inventory from existing word embeddings via clustering of ego-networks of related words. An integrated WSD mechanism enables labeling of words in context with learned sense vectors, which gives rise to downstream applications. Experiments show that the performance of our method is comparable to state-of-the-art unsupervised WSD systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا