Do you want to publish a course? Click here

Lattice field theory with torsion

48   0   0.0 ( 0 )
 Added by Shota Imaki
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Inspired by the duality between gravity and defects in crystals, we study lattice field theory with torsion. The torsion is realized by a line defect of a lattice, namely a dislocation. As the first application, we perform the numerical computation for vector and axial currents induced by a screw dislocation. This current generation is called the chiral torsional effect. We also derive the analytical formula for the chiral torsional effect in the continuum limit.



rate research

Read More

Lattice calculations using the framework of effective field theory have been applied to a wide range few-body and many-body systems. One of the challenges of these calculations is to remove systematic errors arising from the nonzero lattice spacing. Fortunately, the lattice improvement program pioneered by Symanzik provides a formalism for doing this. While lattice improvement has already been utilized in lattice effective field theory calculations, the effectiveness of the improvement program has not been systematically benchmarked. In this work we use lattice improvement to remove lattice errors for a one-dimensional system of bosons with zero-range interactions. We construct the improved lattice action up to next-to-next-to-leading order and verify that the remaining errors scale as the fourth power of the lattice spacing for observables involving as many as five particles. Our results provide a guide for increasing the accuracy of future calculations in lattice effective field theory with improved lattice actions.
We argue that generic non-relativistic quantum field theories have a holographic description in terms of Horava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a non-relativistic scaling limit.
Using the second law of local thermodynamics and the first-order Palatini formalism, we formulate relativistic spin hydrodynamics for quantum field theories with Dirac fermions, such as QED and QCD, in a torsionful curved background. We work in a regime where spin density, which is assumed to relax much slower than other non-hydrodynamic modes, is treated as an independent degree of freedom in an extended hydrodynamic description. Spin hydrodynamics in our approach contains only three non-hydrodynamic modes corresponding to a spin vector, whose relaxation time is controlled by a new transport coefficient: the rotational viscosity. We study linear response theory and observe an interesting mode mixing phenomenon between the transverse shear and the spin density modes. We propose several field-theoretical ways to compute the spin relaxation time and the rotational viscosity, via the Green-Kubo formula based on retarded correlation functions.
144 - S. Foreman , J. Giedt , Y. Meurice 2017
Machine learning has been a fast growing field of research in several areas dealing with large datasets. We report recent attempts to use Renormalization Group (RG) ideas in the context of machine learning. We examine coarse graining procedures for perceptron models designed to identify the digits of the MNIST data. We discuss the correspondence between principal components analysis (PCA) and RG flows across the transition for worm configurations of the 2D Ising model. Preliminary results regarding the logarithmic divergence of the leading PCA eigenvalue were presented at the conference and have been improved after. More generally, we discuss the relationship between PCA and observables in Monte Carlo simulations and the possibility of reduction of the number of learning parameters in supervised learning based on RG inspired hierarchical ansatzes.
This notebook tutorial demonstrates a method for sampling Boltzmann distributions of lattice field theories using a class of machine learning models known as normalizing flows. The ideas and approaches proposed in arXiv:1904.12072, arXiv:2002.02428, and arXiv:2003.06413 are reviewed and a concrete implementation of the framework is presented. We apply this framework to a lattice scalar field theory and to U(1) gauge theory, explicitly encoding gauge symmetries in the flow-based approach to the latter. This presentation is intended to be interactive and working with the attached Jupyter notebook is recommended.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا