Do you want to publish a course? Click here

Light Hidden Mesons through the Z Portal

181   0   0.0 ( 0 )
 Added by Ennio Salvioni
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Confining hidden sectors are an attractive possibility for physics beyond the Standard Model (SM). They are especially motivated by neutral naturalness theories, which reconcile the lightness of the Higgs with the strong constraints on colored top partners. We study hidden QCD with one light quark flavor, coupled to the SM via effective operators suppressed by the mass $M$ of new electroweak-charged particles. This effective field theory is inspired by a new tripled top model of supersymmetric neutral naturalness. The hidden sector is accessed primarily via the $Z$ and Higgs portals, which also mediate the decays of the hidden mesons back to SM particles. We find that exotic $Z$ decays at the LHC and future $Z$ factories provide the strongest sensitivity to this scenario, and we outline a wide array of searches. For a larger hidden confinement scale $Lambdasim O(10);mathrm{GeV}$, the exotic $Z$ decays dominantly produce final states with two hidden mesons. ATLAS and CMS can probe their prompt decays up to $Msim 3;mathrm{TeV}$ at the high luminosity phase, while a TeraZ factory would extend the reach up to $Msim 20;mathrm{TeV}$ through a combination of searches for prompt and displaced signals. For smaller $Lambda sim O(1);mathrm{GeV}$, the $Z$ decays to the hidden sector produce jets of hidden mesons, which are long-lived. LHCb will be a powerful probe of these emerging jets. Furthermore, the light hidden vector meson could be detected by proposed dark photon searches.



rate research

Read More

Pairs of Standard Model fermions form dimension-3 singlet operators that can couple to new dark sector states. This fermion portal is to be contrasted with the lower-dimensional Higgs, vector and neutrino singlet portals. We characterise its distinct phenomenology and place effective field theory bounds on this framework, focusing on the case of fermion portals to a pair of light dark sector fermions. We obtain current and projected limits on the dimension-6 effective operator scale from a variety of meson decay experiments, missing energy and long-lived particle searches at colliders, as well as astrophysical and cosmological bounds. The DarkEFT public code is made available for recasting these limits, which we illustrate with various examples including an integrated-out heavy dark photon.
We review scenarios in which the particles that account for the Dark Matter (DM) in the Universe interact only through their couplings with the Higgs sector of the theory, the so-called Higgs-portal models. In a first step, we use a general and model-independent approach in which the DM particles are singlets with spin $0,frac12$ or $1$, and assume a minimal Higgs sector with the presence of only the Standard Model (SM) Higgs particle observed at the LHC. In a second step, we discuss non-minimal scenarios in which the spin-$frac12$ DM particle is accompanied by additional lepton partners and consider several possibilities like sequential, singlet-doublet and vector-like leptons. In a third step, we examine the case in which it is the Higgs sector of the theory which is enlarged either by a singlet scalar or pseudoscalar field, an additional two Higgs doublet field or by both; in this case, the matter content is also extended in several ways. Finally, we investigate the case of supersymmetric extensions of the SM with neutralino DM, focusing on the possibility that the latter couples mainly to the neutral Higgs particles of the model which then serve as the main portals for DM phenomenology. In all these scenarios, we summarize and update the present constraints and future prospects from the collider physics perspective, namely from the determination of the SM Higgs properties at the LHC and the search for its invisible decays into DM, and the search for heavier Higgs bosons and the DM companion particles at high-energy colliders. We then compare these results with the constraints and prospects obtained from the cosmological relic abundance as well as from direct and indirect DM searches in astroparticle physics experiments. The complementarity of collider and astroparticle DM searches is investigated in all the considered models.
112 - Jose Miguel No 2015
Mono-$X$ signatures are a powerful collider probe of the nature of dark matter. We show that mono-Higgs and mono-$Z$ may be key signatures of pseudo-scalar portal interactions between dark matter and the SM. We demonstrate this using a simple renormalizable version of the portal, with a Two-Higgs-Doublet-Model as electroweak symmetry breaking sector. Mono-$Z$ and mono-Higgs signatures in this scenario are of resonant type, which constitutes a novel type of dark matter signature at LHC.
High-energy $gammagamma$ colliders constitute a potential running mode of future $e^+ e^-$ colliders such as the ILC and CLIC. We study the sensitivity of a high-energy $gammagamma$ collider to the Higgs portal scenario to a hidden sector above the invisible Higgs decay threshold. We show that such $gammagamma$ collisions could allow to probe the existence of dark sectors through the Higgs portal comparatively more precisely than any other planned collider facility, from the unique combination of sizable cross-section with clean final state and collider environment. In addition, this search could cover the singlet Higgs portal parameter space yielding a first-order electroweak phase transition in the early Universe.
We investigate the potential of LHC resonance searches in leptonic final states to probe the $Z$ in the minimal $U(1)_{B-L}$ model. Considering the current constraints on the $Z$ in terms of its mass $m_{Z}$ and the associated gauge coupling $g_{B-L}$ as well as constraints in the Higgs sector, we analyse the potential of dilepton and four lepton final states for $Z$ production. This includes Drell-Yan production, Higgs mediated decays and final state radiation processes concentrating only on the ATLAS and CMS detectors at the LHC. We show that the four-lepton final state is sensitive to $m_{Z}$ as low as 0.25 GeV. Furthermore, setting the Higgs mixing to $sinalpha = 0.3$, this final state has a strong sensitivity and it probes regions of parameter space where the $Z$ is long-lived. We demonstrate the sensitivity at the High Luminosity LHC and comment on the potential of probing displaced vertices due to long-lived $Z$. Finally, we also comment on the strength of $Z$ and Higgs mediated heavy neutrino processes by taking into account the constraints derived.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا