Do you want to publish a course? Click here

Icecube/DeepCore tests for novel explanations of the MiniBooNE anomaly

172   0   0.0 ( 0 )
 Added by Pilar Coloma
 Publication date 2019
  fields
and research's language is English
 Authors Pilar Coloma




Ask ChatGPT about the research

While the low-energy excess observed at MiniBooNE remains unchallenged, it has become increasingly difficult to reconcile it with the results from other sterile neutrino searches and cosmology. Recently, it has been shown that non-minimal models with new particles in a hidden sector could provide a better fit to the data. As their main ingredients they require a GeV-scale $Z$, kinetically mixed with the photon, and an unstable heavy neutrino with a mass in the 150 MeV range that mixes with the light neutrinos. In this letter we point out that atmospheric neutrino experiments (and, in particular, IceCube/DeepCore) could probe a significant fraction of the parameter space of such models by looking for an excess of double-bang events at low energies, as proposed in our previous work (arXiv:1707.08573). Such a search would probe exactly the same production and decay mechanisms required to explain the anomaly.



rate research

Read More

We revisit neutrino oscillations in matter considering the open quantum system framework which allows to introduce possible decoherence effects generated by New Physics in a phenomenological manner. We assume that the decoherence parameters $gamma_{ij}$ may depend on the neutrino energy, as $gamma_{ij}=gamma_{ij}^{0}(E/text{GeV})^n$ $(n = 0,pm1,pm2) $. The case of non-uniform matter is studied in detail, both within the adiabatic approximation and in the more general non-adiabatic case. In particular, we develop a consistent formalism to study the non-adiabatic case dividing the matter profile into an arbitrary number of layers of constant densities. This formalism is then applied to explore the sensitivity of IceCube and DeepCore to this type of effects. Our study is the first atmospheric neutrino analysis where a consistent treatment of the matter effects in the three-neutrino case is performed in presence of decoherence. We show that matter effects are indeed extremely relevant in this context. We find that IceCube is able to considerably improve over current bounds in the solar sector ($gamma_{21}$) and in the atmospheric sector ($gamma_{31}$ and $gamma_{32}$) for $n=0,1,2$ and, in particular, by several orders of magnitude (between 3 and 9) for the $n=1,2$ cases. For $n=0$ we find $gamma_{32},gamma_{31}< 4.0cdot10^{-24} (1.3cdot10^{-24})$ GeV and $gamma_{21}<1.3cdot10^{-24} (4.1cdot10^{-24})$ GeV, for normal (inverted) mass ordering.
As atmospheric neutrinos propagate through the Earth, vacuum-like oscillations are modified by Standard-Model neutral- and charged-current interactions with electrons. Theories beyond the Standard Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These additional interactions may modify the Standard Model matter effect producing a measurable deviation from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino disappearance with three years of IceCube-DeepCore data. The best fit for the muon to tau flavor changing term is $epsilon_{mu tau}=-0.0005$, with a 90% C.L. allowed range of $-0.0067 <epsilon_{mu tau}< 0.0081$. This result is more restrictive than recent limits from other experiments for $epsilon_{mu tau}$. Furthermore, our result is complementary to a recent constraint on $epsilon_{mu tau}$ using another publicly available IceCube high-energy event selection. Together, they constitute the worlds best limits on nonstandard interactions in the $mu-tau$ sector.
We present the results of a new analysis of the data of the MiniBooNE experiment taking into account the additional background of photons. MiniBooNE normalises the rate of photon production to the measured $pi^0$ production rate. We study neutral current (NC) neutrino-induced $pi^0$/photon production ($ u_mu + A to u_mu +1pi^0 / gamma + X$) on carbon nucleus (A=12). Our conclusion is based on experimental data for photon-nucleus interactions from the A2 collaboration at the Mainz MAMI accelerator. We work in the approximation that decays of the intermediate states (non-resonant N, $Delta$ resonance, higher resonances) unaffected by its production channel, via photon or Z boson. $1pi^0+X$ production scales as A$^{2/3}$, the surface area of the nucleus. Meanwhile the photons incoherently created in intermediate states decays will leave the nucleus, and that cross section will be proportional to the atomic number of the nucleus. We also took into account the coherent emission of photons. We show that the new photon background can explain part of the MiniBooNE low-energy excess, thus significantly lowering the number of unexplained MiniBooNE electron-like events from $5.1sigma$ to $3.6sigma$.
We present a search for a light sterile neutrino using three years of atmospheric neutrino data from the DeepCore detector in the energy range of approximately $10-60~$GeV. DeepCore is the low-energy sub-array of the IceCube Neutrino Observatory. The standard three-neutrino paradigm can be probed by adding an additional light ($Delta m_{41}^2 sim 1 mathrm{ eV^2}$) sterile neutrino. Sterile neutrinos do not interact through the standard weak interaction, and therefore cannot be directly detected. However, their mixing with the three active neutrino states leaves an imprint on the standard atmospheric neutrino oscillations for energies below 100 GeV. A search for such mixing via muon neutrino disappearance is presented here. The data are found to be consistent with the standard three neutrino hypothesis. Therefore we derive limits on the mixing matrix elements at the level of $|U_{mu4}|^2 < 0.11 $ and $|U_{tau4}|^2 < 0.15 $ (90% C.L.) for the sterile neutrino mass splitting $Delta m_{41}^2 = 1.0$ eV$^2$.
We analyse the sensitivity of IceCube-DeepCore to annihilation of neutralino dark matter in the solar core, generated within a 25 parameter version of the minimally supersymmetric standard model (MSSM-25). We explore the 25-dimensional parameter space using scanning methods based on importance sampling and using DarkSUSY 5.0.6 to calculate observables. Our scans produced a database of 6.02 million parameter space points with neutralino dark matter consistent with the relic density implied by WMAP 7-year data, as well as with accelerator searches. We performed a model exclusion analysis upon these points using the expected capabilities of the IceCube-DeepCore Neutrino Telescope. We show that IceCube-DeepCore will be sensitive to a number of models that are not accessible to direct detection experiments such as SIMPLE, COUPP and XENON100, indirect detection using Fermi-LAT observations of dwarf spheroidal galaxies, nor to current LHC searches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا