No Arabic abstract
Polynomial inequalities lie at the heart of many mathematical disciplines. In this paper, we consider the fundamental computational task of automatically searching for proofs of polynomial inequalities. We adopt the framework of semi-algebraic proof systems that manipulate polynomial inequalities via elementary inference rules that infer new inequalities from the premises. These proof systems are known to be very powerful, but searching for proofs remains a major difficulty. In this work, we introduce a machine learning based method to search for a dynamic proof within these proof systems. We propose a deep reinforcement learning framework that learns an embedding of the polynomials and guides the choice of inference rules, taking the inherent symmetries of the problem as an inductive bias. We compare our approach with powerful and widely-studied linear programming hierarchies based on static proof systems, and show that our method reduces the size of the linear program by several orders of magnitude while also improving performance. These results hence pave the way towards augmenting powerful and well-studied semi-algebraic proof systems with machine learning guiding strategies for enhancing the expressivity of such proof systems.
The training of two-layer neural networks with nonlinear activation functions is an important non-convex optimization problem with numerous applications and promising performance in layerwise deep learning. In this paper, we develop exact convex optimization formulations for two-layer neural networks with second degree polynomial activations based on semidefinite programming. Remarkably, we show that semidefinite lifting is always exact and therefore computational complexity for global optimization is polynomial in the input dimension and sample size for all input data. The developed convex formulations are proven to achieve the same global optimal solution set as their non-convex counterparts. More specifically, the globally optimal two-layer neural network with polynomial activations can be found by solving a semidefinite program (SDP) and decomposing the solution using a procedure we call Neural Decomposition. Moreover, the choice of regularizers plays a crucial role in the computational tractability of neural network training. We show that the standard weight decay regularization formulation is NP-hard, whereas other simple convex penalties render the problem tractable in polynomial time via convex programming. We extend the results beyond the fully connected architecture to different neural network architectures including networks with vector outputs and convolutional architectures with pooling. We provide extensive numerical simulations showing that the standard backpropagation approach often fails to achieve the global optimum of the training loss. The proposed approach is significantly faster to obtain better test accuracy compared to the standard backpropagation procedure.
We give the first dimension-efficient algorithms for learning Rectified Linear Units (ReLUs), which are functions of the form $mathbf{x} mapsto max(0, mathbf{w} cdot mathbf{x})$ with $mathbf{w} in mathbb{S}^{n-1}$. Our algorithm works in the challenging Reliable Agnostic learning model of Kalai, Kanade, and Mansour (2009) where the learner is given access to a distribution $cal{D}$ on labeled examples but the labeling may be arbitrary. We construct a hypothesis that simultaneously minimizes the false-positive rate and the loss on inputs given positive labels by $cal{D}$, for any convex, bounded, and Lipschitz loss function. The algorithm runs in polynomial-time (in $n$) with respect to any distribution on $mathbb{S}^{n-1}$ (the unit sphere in $n$ dimensions) and for any error parameter $epsilon = Omega(1/log n)$ (this yields a PTAS for a question raised by F. Bach on the complexity of maximizing ReLUs). These results are in contrast to known efficient algorithms for reliably learning linear threshold functions, where $epsilon$ must be $Omega(1)$ and strong assumptions are required on the marginal distribution. We can compose our results to obtain the first set of efficient algorithms for learning constant-depth networks of ReLUs. Our techniques combine kernel methods and polynomial approximations with a dual-loss approach to convex programming. As a byproduct we obtain a number of applications including the first set of efficient algorithms for convex piecewise-linear fitting and the first efficient algorithms for noisy polynomial reconstruction of low-weight polynomials on the unit sphere.
We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-$3$ tensor $T$ of the form $T = tau cdot v_0^{otimes 3} + A$, where $tau geq 0$ is a signal-to-noise ratio, $v_0$ is a unit vector, and $A$ is a random noise tensor, the goal is to recover the planted vector $v_0$. For the case that $A$ has iid standard Gaussian entries, we give an efficient algorithm to recover $v_0$ whenever $tau geq omega(n^{3/4} log(n)^{1/4})$, and certify that the recovered vector is close to a maximum likelihood estimator, all with high probability over the random choice of $A$. The previous best algorithms with provable guarantees required $tau geq Omega(n)$. In the regime $tau leq o(n)$, natural tensor-unfolding-based spectral relaxations for the underlying optimization problem break down (in the sense that their integrality gap is large). To go beyond this barrier, we use convex relaxations based on the sum-of-squares method. Our recovery algorithm proceeds by rounding a degree-$4$ sum-of-squares relaxations of the maximum-likelihood-estimation problem for the statistical model. To complement our algorithmic results, we show that degree-$4$ sum-of-squares relaxations break down for $tau leq O(n^{3/4}/log(n)^{1/4})$, which demonstrates that improving our current guarantees (by more than logarithmic factors) would require new techniques or might even be intractable. Finally, we show how to exploit additional problem structure in order to solve our sum-of-squares relaxations, up to some approximation, very efficiently. Our fastest algorithm runs in nearly-linear time using shifted (matrix) power iteration and has similar guarantees as above. The analysis of this algorithm also confirms a variant of a conjecture of Montanari and Richard about singular vectors of tensor unfoldings.
We give an $n^{O(loglog n)}$-time membership query algorithm for properly and agnostically learning decision trees under the uniform distribution over ${pm 1}^n$. Even in the realizable setting, the previous fastest runtime was $n^{O(log n)}$, a consequence of a classic algorithm of Ehrenfeucht and Haussler. Our algorithm shares similarities with practical heuristics for learning decision trees, which we augment with additional ideas to circumvent known lower bounds against these heuristics. To analyze our algorithm, we prove a new structural result for decision trees that strengthens a theorem of ODonnell, Saks, Schramm, and Servedio. While the OSSS theorem says that every decision tree has an influential variable, we show how every decision tree can be pruned so that every variable in the resulting tree is influential.
We present a classical interactive protocol that verifies the validity of a quantum witness state for the local Hamiltonian problem. It follows from this protocol that approximating the non-local value of a multi-player one-round game to inverse polynomial precision is QMA-hard. Our work makes an interesting connection between the theory of QMA-completeness and Hamiltonian complexity on one hand and the study of non-local games and Bell inequalities on the other.