The amount of water vapor in the terrestrial atmosphere is highly variable both spatially and temporally. In the tropics it sometimes constitutes 4-5% of the atmosphere. At the same time collisional broadening of spectral lines by water vapor is much larger than that by nitrogen and oxygen. Therefore, in order to accurately characterize and model spectra of the atmospheres with significant amounts of water vapor, the line-shape parameters for spectral lines broadened by water vapor are required. In this work, the line-broadening coefficients (and their temperature dependence exponents) due to the pressure of water vapor for lines of CO2, N2O, CO, CH4, O2, NH3, and H2S from both experimental and theoretical studies were collected and carefully reviewed. A set of semi-empirical models based on these collected data was created and then used to estimate water broadening and its temperature dependence for all transitions of selected molecules in the HITRAN2016 database.