No Arabic abstract
In this paper, we study the importance of pre-training for the generalization capability in the color constancy problem. We propose two novel approaches based on convolutional autoencoders: an unsupervised pre-training algorithm using a fine-tuned encoder and a semi-supervised pre-training algorithm using a novel composite-loss function. This enables us to solve the data scarcity problem and achieve competitive, to the state-of-the-art, results while requiring much fewer parameters on ColorChecker RECommended dataset. We further study the over-fitting phenomenon on the recently introduced version of INTEL-TUT Dataset for Camera Invariant Color Constancy Research, which has both field and non-field scenes acquired by three different camera models.
We present Cross-Camera Convolutional Color Constancy (C5), a learning-based method, trained on images from multiple cameras, that accurately estimates a scenes illuminant color from raw images captured by a new camera previously unseen during training. C5 is a hypernetwork-like extension of the convolutional color constancy (CCC) approach: C5 learns to generate the weights of a CCC model that is then evaluated on the input image, with the CCC weights dynamically adapted to different input content. Unlike prior cross-camera color constancy models, which are usually designed to be agnostic to the spectral properties of test-set images from unobserved cameras, C5 approaches this problem through the lens of transductive inference: additional unlabeled images are provided as input to the model at test time, which allows the model to calibrate itself to the spectral properties of the test-set camera during inference. C5 achieves state-of-the-art accuracy for cross-camera color constancy on several datasets, is fast to evaluate (~7 and ~90 ms per image on a GPU or CPU, respectively), and requires little memory (~2 MB), and thus is a practical solution to the problem of calibration-free automatic white balance for mobile photography.
In this paper, we propose a novel unsupervised color constancy method, called Probabilistic Color Constancy (PCC). We define a framework for estimating the illumination of a scene by weighting the contribution of different image regions using a graph-based representation of the image. To estimate the weight of each (super-)pixel, we rely on two assumptions: (Super-)pixels with similar colors contribute similarly and darker (super-)pixels contribute less. The resulting system has one global optimum solution. The proposed method achieves competitive performance, compared to the state-of-the-art, on INTEL-TAU dataset.
We present Fast Fourier Color Constancy (FFCC), a color constancy algorithm which solves illuminant estimation by reducing it to a spatial localization task on a torus. By operating in the frequency domain, FFCC produces lower error rates than the previous state-of-the-art by 13-20% while being 250-3000 times faster. This unconventional approach introduces challenges regarding aliasing, directional statistics, and preconditioning, which we address. By producing a complete posterior distribution over illuminants instead of a single illuminant estimate, FFCC enables better training techniques, an effective temporal smoothing technique, and richer methods for error analysis. Our implementation of FFCC runs at ~700 frames per second on a mobile device, allowing it to be used as an accurate, real-time, temporally-coherent automatic white balance algorithm.
In this paper, we propose a novel color constancy approach, called Bag of Color Features (BoCF), building upon Bag-of-Features pooling. The proposed method substantially reduces the number of parameters needed for illumination estimation. At the same time, the proposed method is consistent with the color constancy assumption stating that global spatial information is not relevant for illumination estimation and local information ( edges, etc.) is sufficient. Furthermore, BoCF is consistent with color constancy statistical approaches and can be interpreted as a learning-based generalization of many statistical approaches. To further improve the illumination estimation accuracy, we propose a novel attention mechanism for the BoCF model with two variants based on self-attention. BoCF approach and its variants achieve competitive, compared to the state of the art, results while requiring much fewer parameters on three benchmark datasets: ColorChecker RECommended, INTEL-TUT version 2, and NUS8.
Temporal Color Constancy (CC) is a recently proposed approach that challenges the conventional single-frame color constancy. The conventional approach is to use a single frame - shot frame - to estimate the scene illumination color. In temporal CC, multiple frames from the view finder sequence are used to estimate the color. However, there are no realistic large scale temporal color constancy datasets for method evaluation. In this work, a new temporal CC benchmark is introduced. The benchmark comprises of (1) 600 real-world sequences recorded with a high-resolution mobile phone camera, (2) a fixed train-test split which ensures consistent evaluation, and (3) a baseline method which achieves high accuracy in the new benchmark and the dataset used in previous works. Results for more than 20 well-known color constancy methods including the recent state-of-the-arts are reported in our experiments.