We derive equations of motion for Greens functions of the multi-orbital Anderson impurity model by differentiating symmetrically with respect to all time arguments. The resulting equations relate the one- and two-particle Greens function to correlators of up to six particles at four times. As an application we consider continuous-time quantum Monte Carlo simulations in the hybridization expansion, which hitherto suffered from notoriously high noise levels at large Matsubara frequencies. Employing the derived symmetric improved estimators overcomes this problem.