Global Mirrors and Discrepant Transformations for Toric Deligne-Mumford Stacks


Abstract in English

We introduce a global Landau-Ginzburg model which is mirror to several toric Deligne-Mumford stacks and describe the change of the Gromov-Witten theories under discrepant transformations. We prove a formal decomposition of the quantum cohomology D-modules (and of the all-genus Gromov-Witten potentials) under a discrepant toric wall-crossing. In the case of weighted blowups of weak-Fano compact toric stacks along toric centres, we show that an analytic lift of the formal decomposition corresponds, via the $widehat{Gamma}$-integral structure, to an Orlov-type semiorthogonal decomposition of topological $K$-groups. We state a conjectural functoriality of Gromov-Witten theories under discrepant transformations in terms of a Riemann-Hilbert problem.

Download