On derived functors of graded local cohomology modules-II


Abstract in English

Let $R=K[X_1,ldots, X_n]$ where $K$ is a field of characteristic zero, and let $A_n(K)$ be the $n^{th}$ Weyl algebra over $K$. We give standard grading on $R$ and $A_n(K)$. Let $I$, $J$ be homogeneous ideals of $R$. Let $M = H^i_I(R)$ and $N = H^j_J(R)$ for some $i, j$. We show that $Ext_{A_n(K)}^{ u}(M,N)$ is concentrated in degree zero for all $ u geq 0$, i.e., $Ext_{A_n(K)}^{ u}(M,N)_l=0$ for $l eq0$. This proves a conjecture stated in part I of this paper.

Download