Do you want to publish a course? Click here

Detecting Dark Matter with Aharonov-Bohm

62   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

While the evidence for dark matter continues to grow, the nature of the dark matter remains a mystery. A dark $U(1)_D$ gauge theory can have a small kinetic mixing with the visible photon which provides a portal to the dark sector. Magnetic monopoles of the dark $U(1)_D$ can obtain small magnetic couplings to our photon through this kinetic mixing. This coupling is only manifest below the mass of the dark photon; at these scales the monopoles are bound together by tubes of dark magnetic flux. These flux tubes can produce phase shifts in Aharonov-Bohm type experiments. We outline how this scenario might be realized, examine the existing constraints, and quantify the experimental sensitivity required to detect magnetic dipole dark matter in this novel way.



rate research

Read More

We discuss the Aharonov-Bohm effect in the presence of hidden photons kinetically mixed with the ordinary electromagnetic photons. The hidden photon field causes a slight phase shift in the observable interference pattern. It is then shown how the limited sensitivity of this experiment can be largely improved. The key observation is that the hidden photon field causes a leakage of the ordinary magnetic field into the supposedly field-free region. The direct measurement of this magnetic field can provide a sensitive experiment with a good discovery potential, particularly below the $sim$ meV mass range for hidden photons.
80 - HyangKyu Park 2017
We propose to search for light $U(1)$ dark photons, $A$, produced via kinetically mixing with ordinary photons via the Compton-like process, $gamma e^- rightarrow A e^-$, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on $epsilon$, the $A$-$gamma$ mixing parameter, $epsilon$, for dark-photon masses below 1$sim$MeV of $epsilon~< ~1.3times 10^{-5}$ and $epsilon~<~2.1times 10^{-5}$, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.
We show that the Aharonov-Bohm effect finds a natural description in the setting of QFT on curved spacetimes in terms of superselection sectors of local observables. The extension of the analysis of superselection sectors from Minkowski spacetime to an arbitrary globally hyperbolic spacetime unveils the presence of a new quantum number labeling charged superselection sectors. In the present paper we show that this topological quantum number amounts to the presence of a background flat potential which rules the behaviour of charges when transported along paths as in the Aharonov-Bohm effect. To confirm these abstract results we quantize the Dirac field in presence of a background flat potential and show that the Aharonov-Bohm phase gives an irreducible representation of the fundamental group of the spacetime labeling the charged sectors of the Dirac field. We also show that non-Abelian generalizations of this effect are possible only on space-times with a non-Abelian fundamental group.
The phase of the wave function of charged matter is sensitive to the value of the electric potential, even when the matter never enters any region with non-vanishing electromagnetic fields. Despite its fundamental character, this archetypal electric Aharonov-Bohm effect has evidently never been observed. We propose an experiment to detect the electric potential through its coupling to the superconducting order parameter. A potential difference between two superconductors will induce a relative phase shift that is observable via the DC Josephson effect even when no electromagnetic fields ever act on the superconductors, and even if the potential difference is later reduced to zero. This is a type of electromagnetic memory effect, and would directly demonstrate the physical significance of the electric potential.
The Aharonov-Bohm effect is the prime example of a zero-field-strength configuration where a non-trivial vector potential acquires physical significance, a typical quantum mechanical effect. We consider an extension of the traditional A-B problem, by studying a two-dimensional medium filled with many point-like vortices. Systems like this might be present within a Type II superconducting layer in the presence of a strong magnetic field perpendicular to the layer, and have been studied in different limits. We construct an explicit solution for the wave function of a scalar particle moving within one such layer when the vortices occupy the sites of a square lattice and have all the same strength, equal to half of the flux quantum. From this construction we infer some general characteristics of the spectrum, including the conclusion that such a flux array produces a repulsive barrier to an incident low-energy charged particle, so that the penetration probability decays exponentially with distance from the edge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا