No Arabic abstract
We address the use of optical parametric oscillator (OPO) to counteract phase-noise in quantum optical communication channels, and demonstrate reduction of phase diffusion for coherent signals travelling through a suitably tuned OPO. In particular, we theoretically and experimentally show that there is a threshold value on the phase-noise, above which OPO can be exploited to squeeze phase noise. The threshold depends on the energy of the input coherent state, and on the relevant parameters of the OPO, i.e. gain and input/output and crystal loss rates.
We address a phase estimation scheme using Gaussian states in the presence of non-Gaussian phase noise. At variance with previous analysis, we analyze situations in which the noise occurs before encoding phase information. In particular, we study how squeezing may be profitably used before or after phase diffusion. Our results show that squeezing the probe after the noise greatly enhances the sensitivity of the estimation scheme, as witnessed by the increase of the quantum Fisher information. We then consider a realistic setup where homodyne detection is employed at the measurement stage, and address its optimality as well as its performance in the two different scenarios.
A scheme to achieve spin squeezing using a geometric phase induced by a single mechanical mode is proposed. The analytical and numerical results show that the ultimate degree of spin squeezing depends on the parameter $frac{n_{th}+1/2}{Qsqrt{N}}$, which is the ratio between the thermal excitation, the quality factor and square root of ensemble size. The undesired coupling between the spin ensemble and the bath can be efficiently suppressed by Bang-Bang control pulses. With high quality factor, the ultimate limit of the ideal one-axis twisting spin squeezing can be obtained for an NV ensemble in diamond.
Non-Gaussian states, and specifically the paradigmatic Schrodinger cat state, are well-known to be very sensitive to losses. When propagating through damping channels, these states quickly loose their non-classical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate-of-decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum noise for its complementary partner. Because shot-noise limits the phase sensitivity of all classical states, reduced noise in the average value for the observable being measured allows for improved phase sensitivity. However, additional phase sensitivity can be achieved using phase estimation strategies that account for the full distribution of measurement outcomes. Here we experimentally investigate the phase sensitivity of a five-particle optical spin-squeezed state generated by photon subtraction from a parametric downconversion photon source. The Fisher information for all photon-number outcomes shows it is possible to obtain a quantum advantage of 1.58 compared to the shot-noise limit, even though due to experimental imperfection, the average noise for the relevant spin-observable does not achieve sub-shot-noise precision. Our demonstration implies improved performance of spin squeezing for applications to quantum metrology.
The ground state of the photon-matter coupled system described by the Dicke model is found to be perfectly squeezed at the quantum critical point of the superradiant phase transition (SRPT). In the presence of the counter-rotating photon-atom coupling, the ground state is analytically expressed as a two-mode squeezed vacuum in the basis of photons and atomic collective excitations. The variance of a quantum fluctuation in the two-mode basis vanishes at the SRPT critical point, with its conjugate fluctuation diverging, ideally satisfying the Heisenberg uncertainty principle.