Do you want to publish a course? Click here

An Open-Source Benchmark Suite for Cloud and IoT Microservices

75   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Cloud services have recently started undergoing a major shift from monolithic applications, to graphs of hundreds of loosely-coupled microservices. Microservices fundamentally change a lot of assumptions current cloud systems are designed with, and present both opportunities and challenges when optimizing for quality of service (QoS) and utilization. In this paper we explore the implications microservices have across the cloud system stack. We first present DeathStarBench, a novel, open-source benchmark suite built with microservices that is representative of large end-to-end services, modular and extensible. DeathStarBench includes a social network, a media service, an e-commerce site, a banking system, and IoT applications for coordination control of UAV swarms. We then use DeathStarBench to study the architectural characteristics of microservices, their implications in networking and operating systems, their challenges with respect to cluster management, and their trade-offs in terms of application design and programming frameworks. Finally, we explore the tail at scale effects of microservices in real deployments with hundreds of users, and highlight the increased pressure they put on performance predictability.



rate research

Read More

In recent years, an active field of research has developed around automated machine learning (AutoML). Unfortunately, comparing different AutoML systems is hard and often done incorrectly. We introduce an open, ongoing, and extensible benchmark framework which follows best practices and avoids common mistakes. The framework is open-source, uses public datasets and has a website with up-to-date results. We use the framework to conduct a thorough comparison of 4 AutoML systems across 39 datasets and analyze the results.
Current cloud services are moving away from monolithic designs and towards graphs of many loosely-coupled, single-concerned microservices. Microservices have several advantages, including speeding up development and deployment, allowing specialization of the software infrastructure, and helping with debugging and error isolation. At the same time they introduce several hardware and software challenges. Given that most of the performance and efficiency implications of microservices happen at scales larger than what is available outside production deployments, studying such effects requires designing the right simulation infrastructures. We present uqSim, a scalable and validated queueing network simulator designed specifically for interactive microservices. uqSim provides detailed intra- and inter-microservice models that allow it to faithfully reproduce the behavior of complex, many-tier applications. uqSim is also modular, allowing reuse of individual models across microservices and end-to-end applications. We have validated uqSim both against simple and more complex microservices graphs, and have shown that it accurately captures performance in terms of throughput and tail latency. Finally, we use uqSim to model the tail at scale effects of request fanout, and the performance impact of power management in latency-sensitive microservices.
Several fundamental changes in technology indicate domain-specific hardware and software co-design is the only path left. In this context, architecture, system, data management, and machine learning communities pay greater attention to innovative big data and AI algorithms, architecture, and systems. Unfortunately, complexity, diversity, frequently-changed workloads, and rapid evolution of big data and AI systems raise great challenges. First, the traditional benchmarking methodology that creates a new benchmark or proxy for every possible workload is not scalable, or even impossible for Big Data and AI benchmarking. Second, it is prohibitively expensive to tailor the architecture to characteristics of one or more application or even a domain of applications. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs, each class of which we call a data motif. On the basis of our previous work that identifies eight data motifs taking up most of the run time of a wide variety of big data and AI workloads, we propose a scalable benchmarking methodology that uses the combination of one or more data motifs---to represent diversity of big data and AI workloads. Following this methodology, we present a unified big data and AI benchmark suite---BigDataBench 4.0, publicly available from~url{http://prof.ict.ac.cn/BigDataBench}. This unified benchmark suite sheds new light on domain-specific hardware and software co-design: tailoring the system and architecture to characteristics of the unified eight data motifs other than one or more application case by case. Also, for the first time, we comprehensively characterize the CPU pipeline efficiency using the benchmarks of seven workload types in BigDataBench 4.0.
Function-as-a-Service (FaaS) is one of the most promising directions for the future of cloud services, and serverless functions have immediately become a new middleware for building scalable and cost-efficient microservices and applications. However, the quickly moving technology hinders reproducibility, and the lack of a standardized benchmarking suite leads to ad-hoc solutions and microbenchmarks being used in serverless research, further complicating metaanalysis and comparison of research solutions. To address this challenge, we propose the Serverless Benchmark Suite: the first benchmark for FaaS computing that systematically covers a wide spectrum of cloud resources and applications. Our benchmark consists of the specification of representative workloads, the accompanying implementation and evaluation infrastructure, and the evaluation methodology that facilitates reproducibility and enables interpretability. We demonstrate that the abstract model of a FaaS execution environment ensures the applicability of our benchmark to multiple commercial providers such as AWS, Azure, and Google Cloud. Our work facilities experimental evaluation of serverless systems, and delivers a standardized, reliable and evolving evaluation methodology of performance, efficiency, scalability and reliability of middleware FaaS platforms.
We introduce Cloud4IoT, a platform offering automatic deployment, orchestration and dynamic configuration of IoT support software components and data-intensive applications for data processing and analytics, thus enabling plug-and-play integration of new sensor objects and dynamic workload scalability. Cloud4IoT enables the concept of Infrastructure as Code in the IoT context: it empowers IoT operations with the flexibility and elasticity of Cloud services. Furthermore it shifts traditionally centralized Cloud architectures towards a more distributed and decentralized computation paradigm, as required by IoT technologies, bridging the gap between Cloud Computing and IoT ecosystems. Thus, Cloud4IoT is playing a role similar to the one covered by solutions like Fog Computing, Cloudlets or Mobile Edge Cloud. The hierarchical architecture of Cloud4IoThosts a central Cloud platform and multiple remote edge Cloud modules supporting dedicated devices, namely the IoT Gateways, through which new sensor objects are made accessible to the platform. Overall, the platform is designed in order to support systems where IoT-based and data intensive applications may pose specific requirements for low latency, restricted available bandwidth, or data locality. Cloud4IoT is built on several Open Source technologies for containerisation and implementations of standards, protocols and services for the IoT. We present the implementation of the platform and demonstrate it in two different use cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا