Do you want to publish a course? Click here

Critical spin fluctuation mechanism for the spin Hall effect

61   0   0.0 ( 0 )
 Added by Satoshi Okamoto
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose mechanisms for the spin Hall effect in metallic systems arising from the coupling between conduction electrons and local magnetic moments that are dynamically fluctuating. Both a side-jump-type mechanism and a skew-scattering-type mechanism are considered. In either case, dynamical spin fluctuation gives rise to a nontrivial temperature dependence in the spin Hall conductivity. This leads to the enhancement in the spin Hall conductivity at nonzero temperatures near the ferromagnetic instability. The proposed mechanisms could be observed in $4d$ or $5d$ metallic compounds.



rate research

Read More

In the magic angle twisted bilayer graphene (TBG), one of the most remarkable observations is the $C_3$-symmetry-breaking nematic state. We identify that the nematicity in TBG is the $E$-symmetry ferro bond order, which is the symmetry breaking in the effective hopping integrals. Thanks to the strong correlation and valley degree of freedom characteristics of the TBG, the nematicity in the TBG originates from prominent quantum interference among valley fluctuations and spin fluctuations. This novel valley + spin fluctuation interference mechanism also causes novel time-reversal-symmetry-broken valley polarization accompanied by a charge loop current. We discuss interesting similarities and differences between the TBG and Fe-based superconductors.
To understand the origin of unconventional charge-density-wave (CDW) states in cuprate superconductors, we establish the self-consistent CDW equation, and analyze the CDW instabilities based on the realistic Hubbard model, without assuming any $q$-dependence and the form factor. Many higher-order many-body processes, which are called the vertex corrections, are systematically generated by solving the CDW equation. When the spin fluctuations are strong, the uniform $q=0$ nematic CDW with $d$-form factor shows the leading instability. The axial nematic CDW instability at $q = Q_a = (delta,0)$ ($delta approx pi/2$) is the second strongest, and its strength increases under the static uniform CDW order. The present theory predicts that uniform CDW transition emerges at a high temperature, and it stabilize the axial $q = Q_a$ CDW at $T = T_{CDW}$. It is confirmed that the higher-order Aslamazov-Larkin processes cause the CDW orders at both $q = 0$ and $Q_a$.
263 - M.I. Dyakonov 2012
This is a brief review of the phenomenology of the spin Hall effect and related phenomena.
Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Although first observed only a decade ago, these effects are already ubiquitous within spintronics as standard spin-current generators and detectors. Here we review the experimental and theoretical results that have established this sub-field of spintronics. We focus on the results that have converged to give us a clear understanding of the phenomena and how they have evolved from a qualitative to a more quantitative measurement of spin-currents and their associated spin-accumulation. Within the experimental framework, we review optical, transport, and magnetization-dynamics based measurements and link them to both phenomenological and microscopic theories of the effect. Within the theoretical framework, we review the basic mechanisms in both the extrinsic and intrinsic regime which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. We also review the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin-generation which has proven important in the measurements of the spin Hall angle. We further connect the spin-current generating spin Hall effect to the inverse spin galvanic effect, which often accompanies the SHE, in which an electrical current induces a non-equilibrium spin polarization. These effects share common microscopic origins and can exhibit similar symmetries when present in ferromagnetic/non-magnetic structures through their induced current-driven spin torques. Although we give a short chronological overview, the main body is structured from a pedagogical point of view, focusing on well-established and accepted physics.
We have theoretically explored the intrinsic spin Hall effect (SHE) in the iron-based superconductor family with a variety of materials. The study is motivated by an observation that, in addition to an appreciable spin-orbit coupling in the Fe 3d states, a character of the band structure in which Dirac cones appear below the Fermi energy may play a crucial role in producing a large SHE. Our investigation does indeed predict a substantially large spin Hall conductivity in the heavily hole-doped regime such as KFe$_2$As$_2$. The magnitude of the SHE has turned out to be comparable with that for Pt despite a relatively small spin-orbit coupling, which we identify to come from a huge contribution from the gap opening induced by the spin-orbit coupling at the Dirac point, which can become close to the Fermi energy for the heavy hole doping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا