No Arabic abstract
In the pre-main-sequence stage, star-disc interactions have been shown to remove stellar angular momentum and regulate the rotation periods of stars with M2 and earlier spectral types. Whether disc regulation also extends to stars with later spectral types still remains a matter of debate. Here we present a star-disc interaction study in a sample of over 180 stars with spectral types M3 and later (corresponding to stellar masses $leq 0.3 M_odot$) in young stellar cluster NGC 2264. Combining rotation periods from the literature, new and literature spectral types, and newly presented deep Spitzer observations, we show that stars with masses below 0.3 $M_odot$ with discs also rotate slower than stars without a disc in the same mass regime. Our results demonstrate that disc-regulation still operates in these low-mass stars, although the efficiency of this process might be lower than in higher-mass objects. We confirm that stars with spectral types earlier and later than M2 have distinct period distributions and that stars with spectral types M5 and later rotate even faster M3 and M4-type stars.
Small kinematically-decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic centre is rejected.
We have performed mid-IR photometry of the young open cluster NGC 2264 using the images obtained with the Spitzer Space Telescope IRAC and MIPS instruments and present a normalized classification scheme of young stellar objects in various color-color diagrams to make full use of the information from multicolor photometry. These results are compared with the classification scheme based on the slope of the spectral energy distribution (SED). From the spatial distributions of Class I and II stars, we have identified two subclusterings of Class I objects in the CONE region of Sung et al. The disked stars in the other star forming region S MON are mostly Class II objects. These three regions show a distinct difference in the fractional distribution of SED slopes as well as the mean value of SED slopes. The fraction of stars with primordial disks is nearly flat between log m = 0.2 -- -0.5, and that of transition disks is very high for solar mass stars. In addition, we have derived a somewhat higher value of the primordial disk fraction for NGC 2264 members located below the main pre-main sequence locus (so-called BMS stars). This result supports the idea that BMS stars are young stars with nearly edge-on disks. We have also found that the fraction of primordial disks is very low near the most massive star S Mon and increases with distance from S Mon.
Based on more than four weeks of continuous high cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASAs Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high quality, multi-wavelength light curves for young stellar objects (YSOs) whose optical variability is dominated by short duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief -- several hour to one day -- brightenings at optical and near-infrared (IR) wavelengths with amplitudes generally in the range 5-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a thirty day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u-g vs. g-r color-color diagram with the largest UV excesses. These stars also have large Halpha equivalent widths, and either centrally peaked, lumpy Halpha emission profiles or profiles with blue-shifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Amongst the stars with the largest UV excesses or largest Halpha equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.
We provide CoRoT and Spitzer light curves, as well as broad-band multi-wavelength photometry and high resolution, multi- and single-epoch spectroscopy for 17 classical T Tauris in NGC 2264 whose CoRoT light curves (LCs) exemplify the stochastic LC class as defined in Cody et al. (2014). The most probable physical mechanism to explain the optical variability in this LC class is time-dependent mass accretion onto the stellar photosphere, producing transient hot spots. As evidence in favor of this hypothesis, multi-epoch high resolution spectra for a subset of these stars shows that their veiling levels also vary in time and that this veiling variability is consistent in both amplitude and timescale with the optical LC morphology. Furthermore, the veiling variability is well-correlated with the strength of the HeI 6678A emission line, a feature predicted by models to arise in accretion shocks on or near the stellar photosphere. Stars with accretion burst LC morphology (Stauffer et al. 2014) are also attributed to variable mass accretion. Both the stochastic and accretion burst LCs can be explained by a simple model of randomly occurring flux bursts, with the stochastic LC class having a higher frequency of lower amplitude events. Based on their UV excesses, veiling, and mean Ha equivalent widths, members of the stochastic LC class have only moderate time-averaged mass accretion rates. The most common feature of their Ha profiles is for them to exhibit blue-shifted absorption features, most likely originating in a disk wind. The lack of periodic signatures in the LCs suggests that little of the variability is due to long-lived hot spots rotating into or out of our line of sight; instead, the primary driver of the observed photometric variability is likely to be instabilities in the inner disk that lead to variable mass accretion.
We explore UV and optical variability signatures for several hundred members of NGC 2264 (3 Myr). We performed simultaneous u- and r-band monitoring over two full weeks with CFHT/MegaCam. About 750 young stars are probed; 40% of them are accreting. Statistically distinct variability properties are observed for accreting and non-accreting cluster members. The accretors exhibit a significantly higher level of variability than the non-accretors, especially in the UV. The amount of u-band variability correlates statistically with UV excess in disk-bearing objects, which suggests that accretion and star-disk interaction are the main sources of variability. Cool magnetic spots, several hundred degrees colder than the photosphere and covering from 5 to 30% of the stellar surface, appear to be the leading factor of variability for the non-accreting stars. In contrast, accretion spots, a few thousand degrees hotter than the photosphere and covering a few percent of the stellar surface, best reproduce the variability of accreting objects. The color behavior is also found to be different between accreting and non-accreting stars. Typical variability amplitudes for accreting members rapidly increase from r to u, which indicates a much stronger contrast at short wavelengths; a lower color dependence in the amplitudes is instead measured for diskless stars. We find that u-band variability on hour timescales is typically about 10% of the peak-to-peak variability on day timescales, while longer term (years) variability is consistent with amplitudes measured over weeks. We conclude that for both accreting and non-accreting stars, the mid-term rotational modulation by spots is the leading timescale for a variability of up to several years. In turn, this suggests that the accretion process is essentially stable over years, although it exhibits low-level shorter term variations in single accretion events.