Do you want to publish a course? Click here

An Explicitly Relational Neural Network Architecture

415   0   0.0 ( 0 )
 Added by Murray Shanahan
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pre-trained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions.



rate research

Read More

Recent years have witnessed the popularity of Graph Neural Networks (GNN) in various scenarios. To obtain optimal data-specific GNN architectures, researchers turn to neural architecture search (NAS) methods, which have made impressive progress in discovering effective architectures in convolutional neural networks. Two preliminary works, GraphNAS and Auto-GNN, have made first attempt to apply NAS methods to GNN. Despite the promising results, there are several drawbacks in expressive capability and search efficiency of GraphNAS and Auto-GNN due to the designed search space. To overcome these drawbacks, we propose the SNAG framework (Simplified Neural Architecture search for Graph neural networks), consisting of a novel search space and a reinforcement learning based search algorithm. Extensive experiments on real-world datasets demonstrate the effectiveness of the SNAG framework compared to human-designed GNNs and NAS methods, including GraphNAS and Auto-GNN.
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
204 - Tao Huang , Shan You , Yibo Yang 2020
Differentiable neural architecture search (DARTS) has gained much success in discovering more flexible and diverse cell types. Current methods couple the operations and topology during search, and simply derive optimal topology by a hand-craft rule. However, topology also matters for neural architectures since it controls the interactions between features of operations. In this paper, we highlight the topology learning in differentiable NAS, and propose an explicit topology modeling method, named TopoNAS, to directly decouple the operation selection and topology during search. Concretely, we introduce a set of topological variables and a combinatorial probabilistic distribution to explicitly indicate the target topology. Besides, we also leverage a passive-aggressive regularization to suppress invalid topology within supernet. Our introduced topological variables can be jointly learned with operation variables and supernet weights, and apply to various DARTS variants. Extensive experiments on CIFAR-10 and ImageNet validate the effectiveness of our proposed TopoNAS. The results show that TopoNAS does enable to search cells with more diverse and complex topology, and boost the performance significantly. For example, TopoNAS can improve DARTS by 0.16% accuracy on CIFAR-10 dataset with 40% parameters reduced or 0.35% with similar parameters.
398 - Renqian Luo , Xu Tan , Rui Wang 2020
Neural architecture search (NAS) relies on a good controller to generate better architectures or predict the accuracy of given architectures. However, training the controller requires both abundant and high-quality pairs of architectures and their accuracy, while it is costly to evaluate an architecture and obtain its accuracy. In this paper, we propose SemiNAS, a semi-supervised NAS approach that leverages numerous unlabeled architectures (without evaluation and thus nearly no cost). Specifically, SemiNAS 1) trains an initial accuracy predictor with a small set of architecture-accuracy data pairs; 2) uses the trained accuracy predictor to predict the accuracy of large amount of architectures (without evaluation); and 3) adds the generated data pairs to the original data to further improve the predictor. The trained accuracy predictor can be applied to various NAS algorithms by predicting the accuracy of candidate architectures for them. SemiNAS has two advantages: 1) It reduces the computational cost under the same accuracy guarantee. On NASBench-101 benchmark dataset, it achieves comparable accuracy with gradient-based method while using only 1/7 architecture-accuracy pairs. 2) It achieves higher accuracy under the same computational cost. It achieves 94.02% test accuracy on NASBench-101, outperforming all the baselines when using the same number of architectures. On ImageNet, it achieves 23.5% top-1 error rate (under 600M FLOPS constraint) using 4 GPU-days for search. We further apply it to LJSpeech text to speech task and it achieves 97% intelligibility rate in the low-resource setting and 15% test error rate in the robustness setting, with 9%, 7% improvements over the baseline respectively.
Formal verification of neural networks is essential for their deployment in safety-critical areas. Many available formal verification methods have been shown to be instances of a unified Branch and Bound (BaB) formulation. We propose a novel framework for designing an effective branching strategy for BaB. Specifically, we learn a graph neural network (GNN) to imitate the strong branching heuristic behaviour. Our framework differs from previous methods for learning to branch in two main aspects. Firstly, our framework directly treats the neural network we want to verify as a graph input for the GNN. Secondly, we develop an intuitive forward and backward embedding update schedule. Empirically, our framework achieves roughly $50%$ reduction in both the number of branches and the time required for verification on various convolutional networks when compared to the best available hand-designed branching strategy. In addition, we show that our GNN model enjoys both horizontal and vertical transferability. Horizontally, the model trained on easy properties performs well on properties of increased difficulty levels. Vertically, the model trained on small neural networks achieves similar performance on large neural networks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا