Do you want to publish a course? Click here

Nonclassical optical properties of mesoscopic gold

414   0   0.0 ( 0 )
 Added by Swen Gro{\\ss}mann
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gold nanostructures have important applications in nanoelectronics, nano-optics as well as in precision metrology due to their intriguing opto-electronic properties. These properties are governed by the bulk band structure but to some extend are tunable via geometrical resonances. Here we show that the band structure of gold itself exhibits significant size-dependent changes already for mesoscopic critical dimensions below 30 nm. To suppress the effects of geometrical resonances and grain boundaries, we prepared atomically flat ultrathin films of various thicknesses by utilizing large chemically grown single-crystalline gold platelets. We experimentally probe thickness-dependent changes of the band structure by means of two-photon photoluminescence and observe a surprising 100-fold increase of the nonlinear signal when the gold film thickness is reduced below 30 nm allowing us to optically resolve single-unit-cell steps. The effect is well explained by density functional calculations of the thickness-dependent 2D band structure of gold.



rate research

Read More

A novel approach to study transmission through waveguides in terms of optical streamlines is presented. This theoretical framework combines the computational performance of beam propagation methods with the possibility to monitor the passage of light through the guiding medium by means of these sampler paths. In this way, not only the optical flow along the waveguide can be followed in detail, but also a fair estimate of the transmitted light (intensity) can be accounted for by counting streamline arrivals with starting points statistically distributed according to the input pulse. Furthermore, this approach allows to elucidate the mechanism leading to energy losses, namely a vortical dynamics, which can be advantageously exploited in optimal waveguide design.
Noble metals with well-defined crystallographic orientation constitute an appealing class of materials for controlling light-matter interactions on the nanoscale. Nonlinear optical processes, being particularly sensitive to anisotropy, are a natural and versatile probe of crystallinity in nano-optical devices. Here we study the nonlinear optical response of monocrystalline gold flakes, revealing a polarization dependence in second-harmonic generation from the {111} surface that is markedly absent in polycrystalline films. Apart from suggesting an approach for directional enhancement of nonlinear response in plasmonic systems, we anticipate that our findings can be used as a rapid and non-destructive method for characterization of crystal quality and orientation that may be of significant importance in future applications.
In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indistinguishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Furthermore, we propose a complete model for photon blockade and tunneling in III-V quantum dot cavity QED systems. Turning toward quantum emitters with small inhomogeneous broadening, we propose a direction for novel experiments for nonclassical light generation based on group-IV color-center systems. We present a model of a multi-emitter cavity QED platform, which features richer dressed-states ladder structures, and show how it can offer opportunities for studying new regimes of high-quality photon blockade.
Fundamental interactions induced by lattice vibrations on ultrafast time scales become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the THz frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here, we report on the generation and nonlinear propagation of giant (1 percent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping already after a propagation distance of 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond THz-ultrasonics at the nano-scale in metals at room temperature.
The energy levels of a quasi-continuous spectrum in mesoscopic systems fluctuate in positions, and the distribution of the fluctuations reveals information about the microscopic nature of the structure under consideration. Here, we investigate mesoscopic fluctuations of the secondary smile gap, that appears in the quasiclassical spectrum of a chaotic cavity coupled to one or more superconductors. Utilizing a random matrix model, we compute numerically the energies of Andreev levels and access the distribution of the gap widths. We mostly concentrate on the universal regime $E_{mathrm{Th}}ggDelta$ with $E_{mathrm{Th}}$ being the Thouless energy of the cavity and $Delta$ being the superconducting gap. We find that the distribution is determined by an intermediate energy scale $Delta_g$ with the value between the level spacing in the cavity $delta_s$ and the quasiclassical value of the gap $E_g$. From our numerics we extrapolate the first two cumulants of the gap distribution in the limit of large level and channel number. We find that the scaled distribution in this regime is the Tracy-Widom distribution: the same as found by Vavilov at al. [Phys. Rev. Lett. textbf{86}, 874 (2001)] for the distribution of the minigap edge in the opposite limit $E_{mathrm{Th}}ll Delta$. This leads us to the conclusion that the distribution found is a universal property of chaotic proximity systems at the edge of a continuous spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا