Do you want to publish a course? Click here

An estimate of the dark matter density from galaxy clusters and supernovae data

64   0   0.0 ( 0 )
 Added by Rodrigo Holanda
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we discuss a model-independent way to obtain the present dark matter density parameter ($Omega_{rm{c,0}}$) by combining gas mass fraction measurements in galaxy clusters ($f_{gas}$), type Ia supernovae (SNe Ia) observations and measurements of the cosmic baryon abundance from observations of absorption systems at high redshifts. Our estimate is $Omega_{rm{c,0}} = 0.244 pm 0.013$ ($1sigma$). By considering the latest local measurement of the Hubble constant, we obtain $Omega_{rm{M,0}} = 0.285 pm 0.013$ ($1sigma$) for the total matter density parameter. We also investigate departures of the evolution of the dark matter density with respect to the usual $a^{-3}$ scaling, as usual in interacting models of dark matter and dark energy. As the current data cannot confirm or rule out such an interaction, we perform a forecast analysis to estimate the necessary improvements in number and accuracy of upcoming $f_{gas}$ and SNe Ia observations to detect a possible non-minimal coupling in the cosmological dark sector.



rate research

Read More

Light scalars (as the axion) with mass m ~ 10^{-22} eV forming a Bose-Einstein condensate (BEC) exhibit a Jeans length in the kpc scale and were therefore proposed as dark matter (DM) candidates. Our treatment here is generic, independent of the particle physics model and applies to all DM BEC, in or out of equilibrium. Two observed quantities crucially constrain DM in an inescapable way: the average DM density rho_{DM} and the phase-space density Q. The observed values of rho_{DM} and Q in galaxies today constrain both the possibility to form a BEC and the DM mass m. These two constraints robustly exclude axion DM that decouples just after the QCD phase transition. Moreover, the value m ~ 10^{-22} eV can only be obtained with a number of ultrarelativistic degrees of freedom at decoupling in the trillions which is impossible for decoupling in the radiation dominated era. In addition, we find for the axion vacuum misalignment scenario that axions are produced strongly out of thermal equilibrium and that the axion mass in such scenario turns to be 17 orders of magnitude too large to reproduce the observed galactic structures. Moreover, we also consider inhomogenous gravitationally bounded BECs supported by the bosonic quantum pressure independently of any particular particle physics scenario. For a typical size R ~ kpc and compact object masses M ~ 10^7 Msun they remarkably lead to the same particle mass m ~ 10^{-22} eV as the BEC free-streaming length. However, the phase-space density for the gravitationally bounded BECs turns to be more than sixty orders of magnitude smaller than the galaxy observed values. We conclude that the BECs and the axion cannot be the DM particle. However, an axion in the mili-eV scale may be a relevant source of dark energy through the zero point cosmological quantum fluctuations.
We present the radial distribution of the dark matter in two massive, X-ray luminous galaxy clusters, Abell~2142 and Abell~2319, and compare it with the quantity predicted as apparent manifestation of the baryonic mass in the context of the Emergent Gravity scenario, recently suggested from Verlinde (2016). Thanks to the observational strategy of the xmm Cluster Outskirt Programme (X-COP), using the X-ray emission mapped with xmm and the SZ signal in the Planck survey, we recover the gas density, temperature and thermal pressure profiles up to $sim R_{200}$, allowing to constrain at unprecedented level the total mass through the hydrostatic equilibrium equation. We show that, also including systematic uncertainties related to the X-ray based mass modelling, the apparent dark matter shows a radial profile that has a shape different from the traditional dark matter distribution, with larger discrepancies (by a factor 2--3) in the inner ($r<200$ kpc) clusters regions and a remarkable agreement only across $R_{500}$.
We present a search for dark photon dark matter that could couple to gravitational-wave interferometers using data from Advanced LIGO and Virgos third observing run. To perform this analysis, we use two methods, one based on cross-correlation of the strain channels in the two nearly aligned LIGO detectors, and one that looks for excess power in the strain channels of the LIGO and Virgo detectors. The excess power method optimizes the Fourier Transform coherence time as a function of frequency, to account for the expected signal width due to Doppler modulations. We do not find any evidence of dark photon dark matter with a mass between $m_{rm A} sim 10^{-14}-10^{-11}$ eV/$c^2$, which corresponds to frequencies between 10-2000 Hz, and therefore provide upper limits on the square of the minimum coupling of dark photons to baryons, i.e. $U(1)_{rm B}$ dark matter. For the cross-correlation method, the best median constraint on the squared coupling is $sim1.31times10^{-47}$ at $m_{rm A}sim4.2times10^{-13}$ eV/$c^2$; for the other analysis, the best constraint is $sim 1.2times 10^{-47}$ at $m_{rm A}sim 5.7times 10^{-13}$ eV/$c^2$. These limits improve upon those obtained in direct dark matter detection experiments by a factor of $sim100$ for $m_{rm A}sim [2-4]times 10^{-13}$ eV/$c^2$.
We calculate the gravitational wave background produced from density perturbations in an early matter domination era where primordial black holes form. The formation of black holes requires perturbations out of the linear regime. Space with such perturbations reach a maximum expansion before it collapses asymmetrically forming a Zeldovich pancake which depending on the parameters can either lead to a black hole or a virialized halo. In both cases and due to the asymmetry of the collapsing matter, a quadrupole moment generates gravitational waves which leave an imprint in the form of a stochastic background that can be detectable by near future gravitational interferometers.
We present the first simulated galaxy clusters (M_200 > 10^14 Msun) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا