Do you want to publish a course? Click here

Constraints on the collimated X-ray emission of SS 433 from the reflection on molecular clouds

474   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate X-ray signal that should arise due to reflection of the putative collimated X-ray emission of the Galactic supercritical accretor SS 433 on molecular clouds in its vicinity. The molecular gas distribution in the region of interest has been constructed based on the data of the BU-FCRAO GRS in $^{13}$CO $J=1rightarrow0$ emission line, while the collimated emission was assumed to be aligned with the direction of the relativistic jets, which are continuously launched by the system. We consider all the available $Chandra$ observations covering the regions possibly containing the reflection signal and put constraints on the apparent face-on luminosity of SS 433 above 4 keV. No signatures of the predicted signal have been found in the analysed regions down to a 4-8 keV surface brightness level of $sim 10^{-11}$ erg/s/cm$^2$/deg$^2$. This translates into the limit on the apparent face-on 2-10 keV luminosity of SS 433 $L_{X,2-10}lesssim 8times10^{38}$ erg/s, provided that the considered clouds do fall inside the illumination cone of the collimated emission. This, however, might not be the case due to persisting uncertainty in the line-of-sight distances to SS 433 $d_{SS433}$ (4.5-5.5 kpc) and to the considered molecular clouds. For half-opening angle of the collimation cone larger than or comparable to the amplitude of the jets precession ($approx21deg$), the stringent upper limit quoted above is most relevant if $d_{SS433}<5$ kpc, provided that the kinematic distances to the considered molecular clouds are sufficiently accurate. Dropping the last assumption, a more conservative constraint is $L_{X,2-10}lesssim10^{40}$ erg/s for $d_{SS433}=4.65-4.85$ kpc (and yet worse outside this range). We conclude that SS 433 is not likely to belong to the brightest ultraluminous X-ray sources if it could be observed face-on, unless its X-ray emission is highly collimated. (Abridged)



rate research

Read More

139 - Pol Bordas 2020
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compatible with the precession period of the binary system, of about 160 days. The location of this variable component is not compatible with the location of SS 433 jets. To explain the observed phenomenology, a scenario based on the illumination of dense gas clouds by relativistic protons accelerated at the interface of the accretion disk envelope has been proposed. Energetic arguments strongly constrain this scenario, however, as it requires an unknown mechanism capable to periodically channel a large fraction of SS 433s kinetic energy towards an emitter located 36 parsec away from the central binary system.
We investigate hadronic and leptonic scenarios for the GeV--TeV gamma-ray emission from jets of the microquasar SS 433. The emission region of the TeV photons coincides with the X-ray knots, where electrons are efficiently accelerated. On the other hand, the optical high-density filaments are also located close to the X-ray knots, which may support a hadronic scenario. We calculate multi-wavelength photon spectra of the extended jet region by solving the transport equations for the electrons and protons. We find that both hadronic and leptonic models can account for the observational data, including the latest {it Fermi} LAT result. The hadronic scenarios predict higher-energy photons than the leptonic scenarios, and future observations such as with the Cherenkov Telescope Array (CTA), the Large High-Altitude Air Shower Observatory (LHAASO), and the Southern Wide-field Gamma-ray Observatory (SWGO) may distinguish between these scenarios and unravel the emission mechanism of GeV--TeV gamma-rays. Based on our hadronic scenario, the analogy between microquasars and radio galaxies implies that the X-ray knot region of the radio-galaxy jets may accelerate heavy nuclei up to ultrahigh energies.
The X-ray spectrum of the Galactic microquasar SS 433 contains a rich set of emission lines of highly ionized atoms of heavy elements whose significant Doppler shift leaves no doubt that they are produced in collimated relativistic jets of outflowing material. We have performed a systematic analysis of the high-resolution X-ray spectra obtained by the Chandra observatory to determine the parameters of the jets within the multitemperature model of their emission that self-consistently predicts the sources line and continuum spectrum. The spectrum of SS 433 at energies below 3 keV is shown to be statistically satisfactorily described by the jet emission model, while the introduction of an additional hard component is required above 3 keV. We summarize the jet parameters (bulk velocity, opening angle, kinetic luminosity, base temperature, and relative elemental abundances) derived by fitting the data below 3 keV and describe the revealed degeneracies and systematic effects due to the presence of an additional component. Using the derived parameters, we show that the hard component is compatible with the emission from the hot (up to 40 keV) extension of the visible part of the jets moderately absorbed ($N_H sim 2 times 10^{23}$ cm$^{-2}$) in the cold-wind material. The combined X-ray emission model constructed in this way allows the broadband spectrum of SS 433 to be described self-consistently.
We take advantage of a long (with a total exposure time of 120 ks) X-ray observation of the unique Galactic microquasar SS 433, carried out with the XMM-Newton space observatory, to search for a fluorescent line of neutral (or weakly ionized) nickel at the energy 7.5 keV. We consider two models of the formation of fluorescent lines in the spectrum of SS 433: 1) due to reflection of hard X-ray radiation from a putative central source on the optically thick walls of the accretion disk funnel; and 2) due to scattering of the radiation coming from the hottest parts of the jets in the optically thin wind of the system. It is shown, that for these cases, the photon flux of Ni I K$_{alpha}$ fluorescent line is expected to be 0.45 of the flux of Fe I K$_{alpha}$ fluorescent line at 6.4 keV, for the relative nickel overabundance $Z_{Ni}/Z = 10$, as observed in the jets of SS 433. For the continuum model without the absorption edge of neutral iron, we set a 90 per cent upper limit on the flux of the narrow Ni I K$_{alpha}$ line at the level of $0.9 times 10^{-5}$ ph s$^{-1}$ cm$^{-2}$. For the continuum model with the absorption edge, the corresponding upper limit is $2.5 times 10^{-5}$ ph s$^{-1}$ cm$^{-2}$. At the same time, for the Fe I K$_{alpha}$ line, we measure the flux of $9.9_{8.4}^{11.2} times 10^{-5}$ ph s$^{-1}$ cm$^{-2}$. Taken at the face value, the results imply that the relative overabundance of nickel in the wind of the accretion disc should be at least 1.5 times less than the corresponding excess of nickel observed in the jets of SS 433.
We suggest a method for probing global properties of clump populations in Giant Molecular Clouds (GMCs) in the case where these act as X-ray reflection nebulae (XRNe), based on the study of the clumpings overall effect on the reflected X-ray signal, in particular on the Fe K-alpha lines shoulder. We consider the particular case of Sgr B2, one of the brightest and most massive XRN in our Galaxy. We parametrise the gas distribution inside the cloud using a simple clumping model, with the slope of the clump mass function (alpha), the minimum clump mass (m_{min}), the fraction of the clouds mass contained in clumps (f_{DGMF}), and the mass-size relation of individual clumps as free parameters, and investigate how these affect the reflected X-ray spectrum. In the case of very dense clumps, similar to those presently observed in Sgr B2, these occupy a small volume of the cloud and present a small projected area to the incoming X-ray radiation. We find that these contribute negligibly to the scattered X-rays. Clump populations with volume filling factors of > 10^{-3}, do leave observational signatures, that are sensitive to the clump model parameters, in the reflected spectrum and polarisation. Future high-resolution X-ray observations could therefore complement the traditional optical and radio observations of these GMCs, and prove to be a powerful probe in the study of their internal structure. Finally, clumps in GMCs should be visible both as bright spots and regions of heavy absorption in high resolution X-ray observations. We therefore further study the time-evolution of the X-ray morphology, under illumination by a transient source, as a probe of the 3d distribution and column density of individual clumps by future X-ray observatories.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا