No Arabic abstract
Gaussian beams are asymptotically valid high frequency solutions concentrated on a single curve through the physical domain, and superposition of Gaussian beams provides a powerful tool to generate more general high frequency solutions to PDEs. We present a superposition of Gaussian beams over an arbitrary bounded set of dimension $m$ in phase space, and show that the tools recently developed in [ H. Liu, O. Runborg, and N. M. Tanushev, Math. Comp., 82: 919--952, 2013] can be applied to obtain the propagation error of order $k^{1- frac{N}{2}- frac{d-m}{4}}$, where $N$ is the order of beams and $d$ is the spatial dimension. Moreover, we study the sharpness of this estimate in examples.
The metrics of general relativity generally fall into two categories: Those which are solutions of the Einstein equations for a given source energy-momentum tensor, and the reverse engineered metrics -- metrics bespoke for a certain purpose. Their energy-momentum tensors are then calculated by inserting these into the Einstein equations. This latter approach has found frequent use when confronted with creative input from fiction, wormholes and warp drives being the most famous examples. In this paper, we shall again take inspiration from fiction, and see what general relativity can tell us about the possibility of a gravitationally induced tractor beam. We will base our construction on warp drives and show how versatile this ansatz alone proves to be. Not only can we easily find tractor beams (attracting objects); repulsor/pressor beams are just as attainable, and a generalization to stressor beams is seen to present itself quite naturally. We show that all of these metrics would violate various energy conditions. This will provide an opportunity to ruminate on the meaning of energy conditions as such, and what we can learn about whether an arbitrarily advanced civilization might have access to such beams.
We have investigated the propagation dynamics of the circular Airy Gaussian vortex beams (CAGVBs) in a (2+1)-dimesional optical system discribed by fractional nonlinear Schrodinger equation (FNSE). By combining fractional diffraction with nonlinear effects, the abruptly autofocusing effect becomes weaker, the radius of the focusing beams becomes bigger and the autofocusing length will be shorter with increase of fractional diffraction Levy index. It has been found that the abruptly autofocusing effect becomes weaker and the abruptly autofocusing length becomes longer if distribution factor of CAGVBs increases for fixing the Levy index. The roles of the input power and the topological charge in determining the autofocusing properties are also discussed. Then, we have found the CAGVBs with outward acceleration and shown the autodefocusing properties. Finally, the off-axis CAGVBs with positive vortex pairs in the FNSE optical system have shown interesting features during propagation.
We introduce axisymmetric Airy-Gaussian vortex beams in a model of an optical system based on the (2+1)-dimensional fractional Schrodinger equation, characterized by its Levy index (LI). By means of numerical methods, we explore propagation dynamics of the beams with vorticities from 0 to 4. The propagation leads to abrupt autofocusing, followed by its reversal (rebound from the center). It is shown that LI, the relative width of the Airy and Gaussian factors, and the vorticity determine properties of the autofocusing dynamics, including the focusing distance, radius of the focal light spot, and peak intensity at the focus. A maximum of the peak intensity is attained at intermediate values of LI, close to LI=1.4 . Dynamics of the abrupt autofocusing of Airy-Gaussian beams carrying vortex pairs (split double vortices) is considered too.
The coherent superposition of non-orthogonal fermionic Gaussian states has been shown to be an efficient approximation to the ground states of quantum impurity problems [Bravyi and Gosset,Comm. Math. Phys.,356 451 (2017)]. We present a practical approach for performing a variational calculation based on such states. Our method is based on approximate imaginary-time equations of motion that decouple the dynamics of each Gaussian state forming the ansatz. It is independent of the lattice connectivity of the model and the implementation is highly parallelizable. To benchmark our variational method, we calculate the spin-spin correlation function and Renyi entanglement entropy of an Anderson impurity, allowing us to identify the screening cloud and compare to density matrix renormalization group calculations. Secondly, we study the screening cloud of the two-channel Kondo model, a problem difficult to tackle using existing numerical tools.
Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm is linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanaris linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.