No Arabic abstract
Longwave Infrared Camera (LIR) onboard Akatsuki first revealed the global structure of the thermal tides in the upper cloud layer of Venus. The data were acquired over three Venusian years, and the analysis was done over the areas from the equator to the mid-latitudes in both hemispheres and over the whole local time. Thermal tides at two vertical levels were analyzed by comparing data at two different emission angles. Dynamical wave modes consisting of tides were identified; the diurnal tide consisted mainly of Rossby-wave and gravity-wave modes, while the semidiurnal tide predominantly consisted of a gravity-wave mode. The revealed vertical structures were roughly consistent with the above wave modes, but some discrepancy remained if the waves were supposed to be monochromatic. In turn, the heating profile that excites the tidal waves can be constrained to match this discrepancy, which would greatly advance the understanding of the Venusian atmosphere.
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planets rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planets nightside escapes to space at narrow spectral windows of the near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide clues to the dynamics of Venuss atmospheric superrotation.
Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit, but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS.
One of the striking features about Venus atmosphere is its temporal variability and dynamics, with a chaotic polar vortex, large-scale atmospheric waves, sheared features, and variable winds that depend on local time and possibly orographic features. The aim of this research is to combine data accumulated over several years and obtain a global mean state of the atmosphere focusing in the global structure of the clouds using the cloud opacity and upper cloud temperatures. We have first produced global maps using the integrated radiance through the infrared atmospheric windows centred around 1.74{mu}m and 2.25{mu}m, that show the spatial variations of the cloud opacity in the lower clouds around 44-48 km altitude and also provide an indirect estimation of the possible particle size. We have also produced similar global maps using the brightness temperatures seen in the thermal region at 3.8{mu}m and 5.0{mu}m, which provide direct indication of the temperatures at the top of the clouds around 60-70 km altitude. These maps have been generated using the complete dataset of the Visible and InfraRed Thermal Imaging Spectrometer mapping channel (VIRTIS-M) on board Venus Express, with a wide spatial and long temporal coverage in the period from May 2006 until October 2008. Our results provide a global view of the cloud opacity, particle size and upper cloud temperatures at both hemispheres, showing the main different dynamical regions of the planet. The profiles obtained also provide the detailed dependencies with latitude, local time and longitude, diagnostic of the global circulation flow and dynamics at various altitude layers, from about 44 up to 70 km over the surface.
We report Venus image observations around the two maximum elongations of the planet at June and October 2015. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA Akatsuki mission on December the 7th. The majority of the images were acquired at ultraviolet wavelengths (380-410 nm) using small telescopes. The Venus dayside was also observed with narrow band filters at other wavelengths (890 nm, 725-950 nm, 1.435 {mu}m CO2 band) using the instrument PlanetCam-UPV/EHU at the 2.2m telescope in Calar Alto Observatory. In all cases, the lucky imaging methodology was used to improve the spatial resolution of the images over the atmospheric seeing. During the April-June period, the morphology of the upper cloud showed an irregular and chaotic texture with a well developed equatorial dark belt (afternoon hemisphere), whereas during October-December the dynamical regime was dominated by planetary-scale waves (Yhorizontal, C-reversed and {psi}-horizontal features) formed by long streaks, and banding suggesting more stable conditions. Measurements of the zonal wind velocity with cloud tracking in the latitude range from 50$^{circ}$N to 50$^{circ}$S shows agreement with retrievals from previous works.
Following the announcement of the detection of phosphine (PH$_3$) in the cloud deck of Venus at millimeter wavelengths, we have searched for other possible signatures of this molecule in the infrared range. Since 2012, we have been observing Venus in the thermal infrared at various wavelengths to monitor the behavior of SO$_2$ and H$_2$O at the cloud top. We have identified a spectral interval recorded in March 2015 around 950 cm$^{-1}$ where a PH$_3$ transition is present. From the absence of any feature at this frequency, we derive, on the disk-integrated spectrum, a 3-$sigma$ upper limit of 5 ppbv for the PH$_3$ mixing ratio, assumed to be constant throughout the atmosphere. This limit is 4 times lower than the disk-integrated mixing ratio derived at millimeter wavelengths. Our result brings a strong constraint on the maximum PH$_3$ abundance at the cloud top and in the lower mesosphere of Venus.