Do you want to publish a course? Click here

Constraining the nature of the accreting binary in CXOGBS J174623.5-310550

112   0   0.0 ( 0 )
 Added by M. A. P. Torres
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report optical and infrared observations of the X-ray source CXOGBS J174623.5-310550. This Galactic object was identified as a potential quiescent low-mass X-ray binary accreting from an M-type donor on the basis of optical spectroscopy and the broad Halpha emission line. The analysis of X-shooter spectroscopy covering 3 consecutive nights supports an M2/3-type spectral classification. Neither radial velocity variations nor rotational broadening is detected in the photospheric lines. No periodic variability is found in I- and r-band light curves. We derive r = 20.8, I = 19.2 and Ks = 16.6 for the optical and infrared counterparts with the M-type star contributing 90% to the I-band light. We estimate its distance to be 1.3-1.8 kpc. The lack of radial velocity variations implies that the M-type star is not the donor star in the X-ray binary. This could be an interloper or the outer body in a hierarchical triple. We constrain the accreting binary to be a < 2.2 hr orbital period eclipsing cataclysmic variable or a low-mass X-ray binary lying in the foreground of the Galactic Bulge.

rate research

Read More

Magnetic fields are important for accretion disc structure. Magnetic fields in a disc system may be transported with the accreted matter. They can be associated with either the central body and/or jet, and be fossil or dynamo excited in situ. We consider dynamo excitation of magnetic fields in accretion discs of accreting binary systems in an attempt to clarify possible configurations of dynamo generated magnetic fields. We first model the entire disc with realistic radial extent and thickness using an alpha-quenching non-linearity. We then study the simultaneous effect of feedback from the Lorentz force from the dynamo-generated field. We perform numerical simulations in the framework of a relatively simple mean-field model which allows the generation of global magnetic configurations. We explore a range of possibilities for the dynamo number, and find quadrupolar-type solutions with irregular temporal oscillations that might be compared to observed rapid luminosity fluctuations. The dipolar symmetry models with $R_alpha<0$ have lobes of strong toroidal field adjacent to the rotation axis that could be relevant to jet launching phenomena. We have explored and extended the solutions known for thin accretion discs.
128 - R.I. Hynes 2013
The Galactic Bulge Survey is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatorys ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a very red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties overall are consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any Galactic Bulge Survey source with a carbon star to be <1e-3 suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9e32 erg/s. Its characteristics are consistent with a low luminosity symbiotic X-ray binary, or possibly a low accretion rate white dwarf symbiotic.
113 - J. J. Wang , A. Vigan , S. Lacour 2021
We present K-band interferometric observations of the PDS 70 protoplanets along with their host star using VLTI/GRAVITY. We obtained K-band spectra and 100 $mu$as precision astrometry of both PDS 70 b and c in two epochs, as well as spatially resolving the hot inner disk around the star. Rejecting unstable orbits, we found a nonzero eccentricity for PDS 70 b of $0.17 pm 0.06$, a near-circular orbit for PDS 70 c, and an orbital configuration that is consistent with the planets migrating into a 2:1 mean motion resonance. Enforcing dynamical stability, we obtained a 95% upper limit on the mass of PDS 70 b of 10 $M_textrm{Jup}$, while the mass of PDS 70 c was unconstrained. The GRAVITY K-band spectra rules out pure blackbody models for the photospheres of both planets. Instead, the models with the most support from the data are planetary atmospheres that are dusty, but the nature of the dust is unclear. Any circumplanetary dust around these planets is not well constrained by the planets 1-5 $mu$m spectral energy distributions (SEDs) and requires longer wavelength data to probe with SED analysis. However with VLTI/GRAVITY, we made the first observations of a circumplanetary environment with sub-au spatial resolution, placing an upper limit of 0.3~au on the size of a bright disk around PDS 70 b.
389 - R. Lau , M. Beard , S. S. Gupta 2018
X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion, and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is 2E12 g/cm^3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond 2E12 g/cm^3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A >= 102 nuclei, where the inner crust remains impure with an impurity parameter of Qimp~20 due to the N = 82 shell closure. In agreement with previous work we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.
Timing noise in the data on accretion-powered millisecond pulsars (AMP) appears as irregular pulse phase jumps on timescales from hours to weeks. A large systematic phase drift is also observed in the first discovered AMP SAX J1808.4-3658. To study the origin of these timing features, we use here the data of the well studied 2002 outburst of SAX J1808.4-3658. We develop first a model for pulse profile formation accounting for the screening of the antipodal emitting spot by the accretion disk. We demonstrate that the variations of the visibility of the antipodal spot associated with the receding accretion disk cause a systematic shift in Fourier phases, observed together with the changes in the pulse form. We show that a strong secondary maximum can be observed only in a narrow intervals of inner disk radii, which explains the very short appearance of the double-peaked profiles in SAX J1808.4-3658. By directly fitting the pulse profile shapes with our model, we find that the main parameters of the emitting spot such as its mean latitude and longitude as well as the emissivity pattern change irregularly causing small shifts in pulse phase, and the strong profile variations are caused by the increasing inner disk radius. We finally notice that significant variations in the pulse profiles in the 2002 and 2008 outbursts of SAX J1808.4-3658 happen at fluxes differing by a factor of 2, which can be explained if the inner disk radius is not a simple function of the accretion rate, but depends on the previous history.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا