We develop a systematic and unified random matrix theory to classify Sachdev-Ye-Kitaev (SYK) and supersymmetric (SUSY) SYK models and also work out the structure of the energy levels in one periodic table. The SYK with even $q$- and SUSY SYK with odd $q$-body interaction, $N$ even or odd number of Majorana fermions are put on the same footing in the minimal Hilbert space, $Npmod 8$ and $qpmod 4$ double Bott periodicity are identified. Exact diagonalizations are performed to study both the bulk energy level statistics and hard edge behaviours. A new moment ratio of the smallest positive eigenvalue is introduced to determine hard edge index efficiently. Excellent agreements between the ED results and the symmetry classifications are demonstrated. Our complete and systematic methods can be transformed to map out more complicated periodic tables of SYK models with more degree of freedoms, tensor models and symmetry protected topological phases. Possible classification of charge neutral quantum black holes are hinted.