Do you want to publish a course? Click here

On the measurements of assembly bias and splashback radius using optically selected galaxy clusters

93   0   0.0 ( 0 )
 Added by Tomomi Sunayama
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We critically examine the methodology behind the claimed observational detection of halo assembly bias using optically selected galaxy clusters by Miyatake et al. (2016) and More et al. (2016). We mimic the optical cluster detection algorithm and apply it to two different mock catalogs generated from the Millennium simulation galaxy catalog, one in which halo assembly bias signal is present, while the other in which the assembly bias signal has been expressly erased. We split each of these cluster samples into two using the average cluster-centric distance of the member galaxies to measure the difference in the clustering strength of the subsamples with respect to each other. We observe that the subsamples split by cluster-centric radii show differences in clustering strength, even in the catalog where the true assembly bias signal was erased. We show that this is a result of contamination of the member galaxy sample from interlopers along the line-of-sight. This undoubtedly shows that the particular methodology adopted in the previous studies cannot be used to claim a detection of the assembly bias signal. We figure out the tell-tale signatures of such contamination, and show that the observational data also shows similar signatures. Furthermore, we also show that projection effects in optical galaxy clusters can bias the inference of the 3-dimensional edges of galaxy clusters (splashback radius), so appropriate care should be taken while interpreting the splashback radius of optical clusters.



rate research

Read More

Recent constraints on the splashback radius around optically selected galaxy clusters from the redMaPPer cluster-finding algorithm in the literature have shown that the observed splashback radius is $sim 20%$ smaller than that predicted by N-body simulations. We present analyses on the splashback features around $sim 3000$ optically selected galaxy clusters detected by the independent cluster-finding algorithm CAMIRA over a wide redshift range of $0.1<z_{rm cl}<1.0$ from the second public data release of the Hyper Suprime-Cam (HSC) Subaru Strategic Program covering $sim 427~{rm deg}^2$ for the cluster catalog. We detect the splashback feature from the projected cross-correlation measurements between the clusters and photometric galaxies over the wide redshift range, including for high redshift clusters at $0.7<z_{rm cl}<1.0$, thanks to deep HSC images. We find that constraints from red galaxy populations only are more precise than those without any color cut, leading to $1sigma$ precisions of $sim 15%$ at $0.4<z_{rm cl}<0.7$ and $0.7<z_{rm cl}<1.0$. These constraints are more consistent with the model predictions ($lesssim 1sigma$) than their $20%$ smaller values as suggested by the previous studies with the redMaPPer ($sim 2sigma$). We also investigate selection effects of the optical cluster-finding algorithms on the observed splashback features by creating mock galaxy catalogs from a halo occupation distribution model, and find that such effects to be sub-dominant for the CAMIRA cluster-finding algorithm. We also find that the redMaPPer-like cluster-finding algorithm induces a smaller inferred splashback radius in our mock catalog, especially at lower richness, which can well explain the smaller splashback radii in the literature. In contrast, these biases are significantly reduced when increasing its aperture size.
141 - Keiichi Umetsu 2016
The lensing signal around galaxy clusters can, in principle, be used to test detailed predictions for their average mass profile from numerical simulations. However, the intrinsic shape of the profiles can be smeared out when a sample that spans a wide range of cluster masses is averaged in physical length units. This effect especially conceals rapid changes in gradient such as the steep drop associated with the splashback radius, a sharp edge corresponding to the outermost caustic in accreting halos. We optimize the extraction of such local features by scaling individual halo profiles to a number of spherical overdensity radii, and apply this method to 16 X-ray-selected high-mass clusters targeted in the Cluster Lensing And Supernova survey with Hubble. By forward-modeling the weak- and strong-lensing data presented by Umetsu et al., we show that, regardless of the scaling overdensity, the projected ensemble density profile is remarkably well described by an NFW or Einasto profile out to $R sim 2.5h^{-1}$Mpc, beyond which the profiles flatten. We constrain the NFW concentration to $c_{200c} = 3.66 pm 0.11$ at $M_{200c} simeq 1.0 times 10^{15}h^{-1}M_odot$, consistent with and improved from previous work that used conventionally stacked lensing profiles, and in excellent agreement with theoretical expectations. Assuming the profile form of Diemer & Kravtsov and generic priors calibrated from numerical simulations, we place a lower limit on the splashback radius of the cluster halos, if it exists, of $R_{sp}/r_{200m} > 0.89$ ($R_{sp} > 1.83h^{-1}$Mpc) at 68% confidence. The corresponding density feature is most pronounced when the cluster profiles are scaled by $r_{200m}$, and smeared out when scaled to higher overdensities.
We present a detection of the splashback feature around galaxy clusters selected using their Sunyaev-Zeldovich (SZ) signal. Recent measurements of the splashback feature around optically selected galaxy clusters have found that the splashback radius, $r_{rm sp}$, is smaller than predicted by N-body simulations. A possible explanation for this discrepancy is that $r_{rm sp}$ inferred from the observed radial distribution of galaxies is affected by selection effects related to the optical cluster-finding algorithms. We test this possibility by measuring the splashback feature in clusters selected via the SZ effect in data from the South Pole Telescope SZ survey and the Atacama Cosmology Telescope Polarimeter survey. The measurement is accomplished by correlating these clusters with galaxies detected in the Dark Energy Survey Year 3 data. The SZ observable used to select clusters in this analysis is expected to have a tighter correlation with halo mass and to be more immune to projection effects and aperture-induced biases than optically selected clusters. We find that the measured $r_{rm sp}$ for SZ-selected clusters is consistent with the expectations from simulations, although the small number of SZ-selected clusters makes a precise comparison difficult. In agreement with previous work, when using optically selected redMaPPer clusters, $r_{rm sp}$ is $sim$ $2sigma$ smaller than in the simulations. These results motivate detailed investigations of selection biases in optically selected cluster catalogs and exploration of the splashback feature around larger samples of SZ-selected clusters. Additionally, we investigate trends in the galaxy profile and splashback feature as a function of galaxy color, finding that blue galaxies have profiles close to a power law with no discernible splashback feature, which is consistent with them being on their first infall into the cluster.
We present the direct detection of the splashback feature using the sample of massive galaxy clusters from the Local Cluster Substructure Survey (LoCuSS). This feature is clearly detected (above $5sigma$) in the stacked luminosity density profile obtained using the K-band magnitudes of spectroscopically confirmed cluster members. We obtained the best-fit model by means of Bayesian inference, which ranked models including the splashback feature as more descriptive of the data with respect to models that do not allow for this transition. In addition, we have assessed the impact of the cluster dynamical state on the occurrence of the splashback feature. We exploited the extensive multi-wavelength LoCuSS dataset to test a wide range of proxies for the cluster formation history, finding the most significant dependence of the splashback feature location and scale according to the presence or absence of X-ray emitting galaxy groups in the cluster infall regions. In particular, we report for the first time that clusters that do not show massive infalling groups present the splashback feature at a smaller clustercentric radius $ r_{rm{sp}}/r_{rm{200,m}} = 1.158 pm 0.071$ than clusters that are actively accreting groups $r_{rm{sp}}/r_{rm{200,m}} = 1.291 pm 0.062$. The difference between these two sub-samples is significant at $4.2sigma$, suggesting a correlation between the properties of the cluster potential and its accretion rate and merger history. Similarly, clusters that are classified as old and dynamically inactive present stronger signatures of the splashback feature, with respect to younger, more active clusters. We are directly observing how fundamental dynamical properties of clusters reverberate across vastly different physical scales.
161 - Michael C. Cooper 2009
Using samples drawn from the Sloan Digital Sky Survey, we study the relationship between local galaxy density and the properties of galaxies on the red sequence. After removing the mean dependence of average overdensity (or environment) on color and luminosity, we find that there remains a strong residual trend between luminosity-weighted mean stellar age and environment, such that galaxies with older stellar populations favor regions of higher overdensity relative to galaxies of like color and luminosity (and hence of like stellar mass). Even when excluding galaxies with recent star-formation activity (i.e., younger mean stellar ages) from the sample, we still find a highly significant correlation between stellar age and environment at fixed stellar mass. This residual age-density relation provides direct evidence for an assembly bias on the red sequence such that galaxies in higher-density regions formed earlier than galaxies of similar mass in lower-density environments. We discuss these results in the context of the age-metallicity degeneracy and in comparison to previous studies at low and intermediate redshift. Finally, we consider the potential role of assembly bias in explaining recent results regarding the evolution of post-starburst (or post-quenching) galaxies and the environmental dependence of the type Ia supernova rate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا