Do you want to publish a course? Click here

Coexistence of ferromagnetic fluctuations and superconductivity in the actinide superconductor UTe2

218   0   0.0 ( 0 )
 Added by Jeff E. Sonier
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report low-temperature muon spin relaxation/rotation (muSR) measurements on single crystals of the actinide superconductor UTe2. Below 5 K we observe a continuous slowing down of magnetic fluctuations that persists through the superconducting (SC) transition temperature (Tc = 1.6 K), but we find no evidence of long-range or local magnetic order down to 0.025 K. The temperature dependence of the dynamic relaxation rate down to 0.4 K agrees with the self-consistent renormalization theory of spin fluctuations for a three-dimensional weak itinerant ferromagnetic metal. Our muSR measurements also indicate that the superconductivity coexists with the magnetic fluctuations.



rate research

Read More

Ferromagnetic insulators can induce a strong exchange field in an adjacent superconductor via the magnetic proximity effect. This manifests as spin-splitting of the BCS density of states of the superconductor, an important ingredient for numerous superconducting spintronics applications and the realization of Majorana fermions. A crucial parameter that determines the magnitude of the induced spin-splitting in FI/S bilayers is the thickness of the S layer $d$: In very thin samples, the superconductivity is suppressed by the strong magnetism. By contrast, in very thick samples, the spin splitting is absent at distances away from the interface. In this work, we calculate the density of states and critical field of FI/S bilayers of arbitrary thickness. From here, we determine the range of parameters of interest for applications, where the exchange field and superconductivity coexist. We compare our theory with the tunneling spectroscopy measurements in several EuS/Al/AlO$_x$/Al samples. If the Al film in contact with the EuS is thinner than a certain critical value, we do not observe superconductivity, whereas, in thicker samples, we find evidence of a first-order phase transition induced by an external field. The complete transition is preceded by a regime in which normal and superconducting regions coexist. We attribute this mixed phase to inhomogeneities of the Al film thickness and the presence of superparamagnetic grains at the EuS/Al interface with different switching fields. Our results demonstrate on the one hand, the important role of the S layer thickness, which is particularly relevant for the fabrication of high-quality samples suitable for applications. On the other hand, the agreement between theory and experiment demonstrates the accuracy of our theory, which, originally developed for homogeneous situations, is generalized to highly inhomogeneous systems.
Time-reversal symmetry breaking (TRSB) in UTe2 was inferred from observations of a spontaneous Kerr response in the superconducting state after cooling in zero magnetic field, while a finite c-axis magnetic field training was further used to determine the nature of the non-unitary composite order-parameter of this material. Here we present an extensive study of the magnetic-field-trained Kerr effect, which unveils a unique critical state of pinned ferromagnetic vortices. We show that a remanent Kerr signal that appears following the removal of a training magnetic field, which reflects the response of the TRSB order parameter and the external magnetic field through the paramagnetic susceptibility. This unambiguously demonstrate the importance of the ferromagnetic fluctuations and their intimate relation to the composite order parameter. Focusing the measurement to the center of the sample, we are able to accurately determine the maximum field that is screened by the critical state and the respective critical current. Measurements in the presence of magnetic field show the tendency of the superconductor to produce shielding currents that oppose the increase in vortex-induced magnetization due to the diverging paramagnetic susceptibility.
The spin-triplet state is most likely realized in uranium ferromagnetic superconductors, UGe2, URhGe, UCoGe. The microscopic coexistence of ferromagnetism and superconductivity means that the Cooper pair should be realized under the strong internal field due the ferromagnetism, leading to the spin-triplet state with equal spin pairing. The field-reinforced superconductivity, which is observed in all three materials when the ferromagnetic fluctuations are enhanced, is one of the strong evidences for the spin-triplet superconductivity. We present here the results of a newly discovered spin-triplet superconductor, UTe2, and compare those with the results of ferromagnetic superconductors. Although no magnetic order is found in UTe2, there are similarities between UTe2 and ferromagnetic superconductors. For example, the huge upper critical field exceeding the Pauli limit and the field-reentrant superconductivity for H || b-axis are observed in UTe2, URhGe and UCoGe. We also show the specific heat results on UTe2 in different quality samples, focusing on the residual density of states in the superconducting phase.
283 - T. Hattori , Y. Ihara , Y. Nakai 2011
From detailed angle-resolved NMR and Meissner measurements on a ferromagnetic (FM) superconductor UCoGe (T_Curie ~ 2.5 K and T_SC ~ 0.6 K), we show that superconductivity in UCoGe is tightly coupled with longitudinal FM spin fluctuations along the c axis. We found that magnetic fields along the c axis (H || c) strongly suppress the FM fluctuations and that the superconductivity is observed in the limited magnetic field region where the longitudinal FM spin fluctuations are active. These results combined with model calculations strongly suggest that the longitudinal FM spin fluctuations tuned by H || c induce the unique spin-triplet superconductivity in UCoGe. This is the first clear example that FM fluctuations are intimately related with superconductivity.
We have measured magnetization at high pressure in the uranium ferromagnetic superconductor UGe$_2$ and analyzed the magnetic data using Takahashis spin fluctuation theory. There is a peak in the pressure dependence of the width of the spin fluctuation spectrum in the energy space $T_0$ at $P_x$, the phase boundary of FM1 and FM2 where the superconducting transition temperature $T_{sc}$ is highest. This suggests a clear correlation between the superconductivity and pressure-enhanced magnetic fluctuations developed at $P_x$. The pressure effect on $T_{Curie}/T_0$, where $T_{Curie}$ is the Curie temperature, suggests that the less itinerant ferromagnetic state FM2 is changed to a more itinerant one FM1 across $P_x$. Peculiar features in relations between $T_0$ and $T_{sc}$ in uranium ferromagnetic superconductors UGe$_2$, URhGe and UCoGe are discussed in comparison with those in high-$T_c$ cuprate and heavy fermion superconductors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا