No Arabic abstract
Real-time measurements on the occupancy status of indoor and outdoor spaces can be exploited in many scenarios (HVAC and lighting system control, building energy optimization, allocation and reservation of spaces, etc.). Traditional systems for occupancy estimation rely on environmental sensors (CO2, temperature, humidity) or video cameras. In this paper, we depart from such traditional approaches and propose a novel occupancy estimation system which is based on the capture of Wi-Fi management packets from users devices. The system, implemented on a low-cost ESP8266 microcontroller, leverages a supervised learning model to adapt to different spaces and transmits occupancy information through the MQTT protocol to a web-based dashboard. Experimental results demonstrate the validity of the proposed solution in four different indoor university spaces.
Ultra Reliable Low Latency Communications (URLLC) is an important challenge for the next generation wireless networks, which poses very strict requirements to the delay and packet loss ratio. Satisfaction is hardly possible without introducing additional functionality to the existing communication technologies. In the paper, we propose and study an approach to enable URLLC in Wi-Fi networks by exploiting an additional radio similar to that of IEEE 802.11ba. With extensive simulation, we show that our approach allows decreasing the delay by orders of magnitude, while the throughput of non-URLLC devices is reduced insignificantly.
Smartphone apps for exposure notification and contact tracing have been shown to be effective in controlling the COVID-19 pandemic. However, Bluetooth Low Energy tokens similar to those broadcast by existing apps can still be picked up far away from the transmitting device. In this paper, we present a new class of methods for detecting whether or not two Wi-Fi-enabled devices are in immediate physical proximity, i.e. 2 or fewer meters apart, as established by the U.S. Centers for Disease Control and Prevention (CDC). Our goal is to enhance the accuracy of smartphone-based exposure notification and contact tracing systems. We present a set of binary machine learning classifiers that take as input pairs of Wi-Fi RSSI fingerprints. We empirically verify that a single classifier cannot generalize well to a range of different environments with vastly different numbers of detectable Wi-Fi Access Points (APs). However, specialized classifiers, tailored to situations where the number of detectable APs falls within a certain range, are able to detect immediate physical proximity significantly more accurately. As such, we design three classifiers for situations with low, medium, and high numbers of detectable APs. These classifiers distinguish between pairs of RSSI fingerprints recorded 2 or fewer meters apart and pairs recorded further apart but still in Bluetooth range. We characterize their balanced accuracy for this task to be between 66.8% and 77.8%.
We propose and experimentally evaluate a novel method that dynamically changes the contention window of access points based on system load to improve performance in a dense Wi-Fi deployment. A key feature is that no MAC protocol changes, nor client side modifications are needed to deploy the solution. We show that setting an optimal contention window can lead to throughput and latency improvements up to 155%, and 50%, respectively. Furthermore, we devise an online learning method that efficiently finds the optimal contention window with minimal training data, and yields an average improvement in throughput of 53-55% during congested periods for a real traffic-volume workload replay in a Wi-Fi test-bed.
We show experimentally that workload-based AP-STA associations can improve system throughput significantly. We present a predictive model that guides optimal resource allocations in dense Wi-Fi networks and achieves 72-77% of the optimal throughput with varying training data set sizes using a 3-day trace of real cable modem traffic.
Wi-Fi is among the most successful wireless technologies ever invented. As Wi-Fi becomes more and more present in public and private spaces, it becomes natural to leverage its ubiquitousness to implement groundbreaking wireless sensing applications such as human presence detection, activity recognition, and object tracking, just to name a few. This paper reports ongoing efforts by the IEEE 802.11bf Task Group (TGbf), which is defining the appropriate modifications to existing Wi-Fi standards to enhance sensing capabilities through 802.11-compliant waveforms. We summarize objectives and timeline of TGbf, and discuss some of the most interesting proposed technical features discussed so far. We also introduce a roadmap of research challenges pertaining to Wi-Fi sensing and its integration with future Wi-Fi technologies and emerging spectrum bands, hoping to elicit further activities by both the research community and TGbf.