Algorithms for linear groups of finite rank


Abstract in English

Let $G$ be a finitely generated solvable-by-finite linear group. We present an algorithm to compute the torsion-free rank of $G$ and a bound on the Pr{u}fer rank of $G$. This yields in turn an algorithm to decide whether a finitely generated subgroup of $G$ has finite index. The algorithms are implemented in MAGMA for groups over algebraic number fields.

Download