No Arabic abstract
NGC300 ULX1 is an ultra-luminous X-ray pulsar, showing an unprecedented spin evolution, from about 126 s to less than 20 s in only 4 years, consistent with steady mass accretion rate. Following its discovery we have been monitoring the system with Swift/XRT and NICER to further study its properties. We found that even though the observed flux of the system dropped by a factor of $gtrsim$20, the spin-up rate remained almost constant. A possible explanation is that the decrease in the observed flux is a result of increased absorption of obscuring material due to outflows or a precessing accretion disk.
NGC 300 ULX1 is a newly identified ultra-luminous X-ray pulsar. The system is associated with the supernova impostor SN 2010da that was later classified as a possible supergiant Be X-ray binary. In this work we report on the spin period evolution of the neutron star based on all the currently available X-ray observations of the system. We argue that the X-ray luminosity of the system has remained almost constant since 2010, at a level above ten times the Eddington limit. Moreover, we find evidence that the spin period of the neutron star evolved from ~126 s down to ~18 s within a period of about 4 years. We explain this unprecedented spin evolution in terms of the standard accretion torque theory. An intriguing consequence for NGC 300 ULX1 is that a neutron star spin reversal should have occurred a few years after the SN 2010da event.
NGC 300 ULX1 is the fourth to be discovered in the class of the ultra-luminous X-ray pulsars. Pulsations from NGC 300 ULX1 were discovered during simultaneous XMM-Newton / NuSTAR observations in Dec. 2016. The period decreased from 31.71 s to 31.54 s within a few days, with a spin-up rate of -5.56 x 10^{-7} s s^{-1}, likely one of the largest ever observed from an accreting neutron star. Archival Swift and NICER observations revealed that the period decreased exponentially from ~45 s to ~17.5 s over 2.3 years. The pulses are highly modulated with a pulsed fraction strongly increasing with energy and reaching nearly 80% at energies above 10keV. The X-ray spectrum is described by a power-law and a disk black-body model, leading to a 0.3-30 keV unabsorbed luminosity of 4.7 x 10^{39} erg s^{-1}. The spectrum from an archival XMM-Newton observation of 2010 can be explained by the same model, however, with much higher absorption. This suggests, that the intrinsic luminosity did not change much since that epoch. NGC 300 ULX1 shares many properties with supergiant high mass X-ray binaries, however, at an extreme accretion rate.
The supernova impostor SN 2010da located in the nearby galaxy NGC 300, later identified as a likely supergiant B[e] high-mass X-ray binary, was simultaneously observed by NuSTAR and XMM-Newton between 2016 December 16 and 20, over a total time span of 310 ks. We report the discovery of a strong periodic modulation in the X-ray flux with a pulse period of 31.6 s and a very rapid spin-up, and confirm therefore that the compact object is a neutron star. We find that the spin period is changing from 31.71 s to 31.54 s over that period, with a spin-up rate of -5.56 x 10-7 s s-1, likely the largest ever observed from an accreting neutron star. The spectrum is described by a power-law and a disk black-body model, leading to a 0.3-30 keV unabsorbed luminosity of 4.7 x 10^39 erg s-1. Applying our best-fit model successfully to the spectra of an XMM-Newton observation from 2010, suggests that the lower fluxes of NGC 300 ULX1 reported from observations around that time are caused by a large amount of absorption, while the intrinsic luminosity was similar as seen in 2016. A more constant luminosity level is also consistent with the long-term pulse period evolution approaching an equilibrium value asymptotically. We conclude that the source is another candidate for the new class of ultraluminous X-ray pulsars.
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodynamic (GRRMHD) simulation of a spinning BH (spin $a/M=0.8$) accreting at $sim 50$ times Eddington shows a total efficiency $sim 50%$ when time-averaged and total efficiency $gtrsim 100%$ in moments. Magnetic compression by the magnetic flux near the rotating BH leads to a thin disk, whose radiation escapes via advection by a magnetized wind and via transport through a low-density channel created by a Blandford-Znajek (BZ) jet. The BZ efficiency is sub-optimal due to inertial loading of field lines by optically thick radiation, leading to BZ efficiency $sim 40%$ on the horizon and BZ efficiency $sim 5%$ by $rsim 400r_g$ (gravitational radii) via absorption by the wind. Importantly, radiation escapes at $rsim 400r_g$ with efficiency $etaapprox 15%$ (luminosity $Lsim 50L_{rm Edd}$), similar to $etaapprox 12%$ for a Novikov-Thorne thin disk and beyond $etalesssim 1%$ seen in prior GRRMHD simulations or slim disk theory. Our simulations show how BH spin, magnetic field, and jet mass-loading affect the radiative and jet efficiencies of super-Eddington accretion.
Studies of X-ray continuum emission and flux variability have not conclusively revealed the nature of ultra-luminous X-ray sources (ULXs) at the high-luminosity end of the distribution (those with Lx > 1e40 erg/s). These are of particular interest because the luminosity requires either super-Eddington accretion onto a black hole of mass ~10 Msun, or more standard accretion onto an intermediate-mass black hole. Super-Eddington accretion models predict strong outflowing winds, making atomic absorption lines a key diagnostic of the nature of extreme ULXs. To search for such features, we have undertaken a long, 500 ks observing campaign on Holmberg IX X-1 with Suzaku. This is the most sensitive dataset in the iron K bandpass for a bright, isolated ULX to date, yet we find no statistically significant atomic features in either emission or absorption; any undetected narrow features must have equivalent widths less than 15-20 eV at 99% confidence. These limits are far below the >150 eV lines expected if observed trends between mass inflow and outflow rates extend into the super-Eddington regime, and in fact rule out the line strengths observed from disk winds in a variety of sub-Eddington black holes. We therefore cannot be viewing the central regions of Holmberg IX X-1 through any substantial column of material, ruling out models of spherical super-Eddington accretion. If Holmberg IX X-1 is a super-Eddington source, any associated outflow must have an anisotropic geometry. Finally, the lack of iron emission suggests that the stellar companion cannot be launching a strong wind, and that Holmberg IX X-1 must primarily accrete via roche-lobe overflow.