Do you want to publish a course? Click here

Identification of Young Stellar Object candidates in the $Gaia$ DR2 x AllWISE catalogue with machine learning methods

76   0   0.0 ( 0 )
 Added by G\\'abor Marton
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The second $Gaia$ Data Release (DR2) contains astrometric and photometric data for more than 1.6 billion objects with mean $Gaia$ $G$ magnitude $<$20.7, including many Young Stellar Objects (YSOs) in different evolutionary stages. In order to explore the YSO population of the Milky Way, we combined the $Gaia$ DR2 database with WISE and Planck measurements and made an all-sky probabilistic catalogue of YSOs using machine learning techniques, such as Support Vector Machines, Random Forests, or Neural Networks. Our input catalogue contains 103 million objects from the DR2xAllWISE cross-match table. We classified each object into four main classes: YSOs, extragalactic objects, main-sequence stars and evolved stars. At a 90% probability threshold we identified 1,129,295 YSO candidates. To demonstrate the quality and potential of our YSO catalogue, here we present two applications of it. (1) We explore the 3D structure of the Orion A star forming complex and show that the spatial distribution of the YSOs classified by our procedure is in agreement with recent results from the literature. (2) We use our catalogue to classify published $Gaia$ Science Alerts. As $Gaia$ measures the sources at multiple epochs, it can efficiently discover transient events, including sudden brightness changes of YSOs caused by dynamic processes of their circumstellar disk. However, in many cases the physical nature of the published alert sources are not known. A cross-check with our new catalogue shows that about 30% more of the published $Gaia$ alerts can most likely be attributed to YSO activity. The catalogue can be also useful to identify YSOs among future $Gaia$ alerts.



rate research

Read More

The intermediate-mass pre-main sequence Herbig Ae/Be stars are key to understanding the differences in formation mechanisms between low- and high-mass stars. The study of the general properties of these objects is hampered by the fact that few and mostly serendipitously discovered sources are known. Our goal is to identify new Herbig Ae/Be candidates to create a homogeneous and well defined catalogue of these objects. We have applied machine learning techniques to 4,150,983 sources with data from Gaia DR2, 2MASS, WISE, and IPHAS or VPHAS+. Several observables were chosen to identify new Herbig Ae/Be candidates based on our current knowledge of this class, which is characterised by infrared excesses, photometric variabilities, and H$alpha$ emission lines. Classical techniques are not efficient for identifying new Herbig Ae/Be stars mainly because of their similarity with classical Be stars, with which they share many characteristics. By focusing on disentangling these two types of objects, our algorithm has also identified new classical Be stars. We have obtained a large catalogue of 8470 new pre-main sequence candidates and another catalogue of 693 new classical Be candidates with a completeness of $78.8pm1.4%$ and $85.5pm1.2%$, respectively. Of the catalogue of pre-main sequence candidates, at least 1361 sources are potentially new Herbig Ae/Be candidates according to their position in the Hertzsprung-Russell diagram. In this study we present the methodology used, evaluate the quality of the catalogues, and perform an analysis of their flaws and biases. For this assessment, we make use of observables that have not been accounted for by the algorithm and hence are selection-independent, such as coordinates and parallax based distances. The catalogue of new Herbig Ae/Be stars that we present here increases the number of known objects of the class by an order of magnitude.
A pioneering study showed that the fine structure in the luminosity function (LF) of young star clusters contains information about the evolutionary stage (age) and composition of the stellar population. The notable features include the H-peak, which is the result of the onset of hydrogen burning turning pre-main sequence stars into main sequence stars. The feature moves toward the faint end of the LF, and eventually disappears as the population evolves. Another detectable feature is the Wielen dip, a dip at M_V ~ 7 mag in the LF first identified in 1974 for stars in the solar environment. Later studies also identified this feature in the LF of star clusters. The Wielen dip is caused by the increased importance of H- opacity in a certain range of low-mass stars. We studied the detailed structure in the luminosity function using the data from Gaia DR2 and PARSEC stellar evolution models with the aim to further our understanding of young stellar populations. We analyzed the astrometric properties of stars in the solar neighborhood (< 20 pc) and in various relatively nearby (< 400 pc) young (< 50 Myr) open clusters and OB associations, and compare the features in the luminosity function with those generated by PARSEC models. The Wielen dip is confirmed in the LF of all the populations, including the solar neighborhood, at M_G ~7 mag. The H-peak is present in the LF of the field stars in the solar neighborhood. It likely signals that the population is mixed with a significant number of stars younger than 100 Myr. The H-peak is found in the LF of young open clusters and OB associations, and its location varies with age. Our observations with Gaia DR2 confirm the evolution of the H-peak from 5 Myr up to 47 Myr. The fine structure in the luminosity function in young stellar populations can be used to estimate their age.
We study the three dimensional arrangement of young stars in the solar neighbourhood using the second release of the Gaia mission (Gaia DR2) and we provide a new, original view of the spatial configuration of the star forming regions within 500 pc from the Sun. By smoothing the star distribution through a gaussian filter, we construct three dimensional density maps for early-type stars (upper-main sequence, UMS) and pre-main sequence (PMS) sources. The PMS and the UMS samples are selected through a combination of photometric and astrometric criteria. A side product of the analysis is a three dimensional, G-band extinction map, which we use to correct our colour-magnitude diagram for extinction and reddening. Both density maps show three prominent structures, Scorpius-Centaurus, Orion, and Vela. The PMS map shows a plethora of lower mass star forming regions, such as Taurus, Perseus, Cepheus, Cassiopeia, and Lacerta, which are less visible in the UMS map, due to the lack of large numbers of bright, early-type stars. We report the finding of a candidate new open cluster towards $l, b sim 218.5^{circ}, -2^{circ}$, which could be related to the Orion star forming complex. We estimate ages for the PMS sample and we study the distribution of PMS stars as a function of their age. We find that younger stars cluster in dense, compact clumps, and are surrounded by older sources, whose distribution is instead more diffuse. The youngest groups that we find are mainly located in Scorpius-Centaurus, Orion, Vela, and Taurus. Cepheus, Cassiopeia, and Lacerta are instead more evolved and less numerous. Finally, we find that the three dimensional density maps show no evidence for the existence of the ring-like structure which is usually referred to as the Gould Belt.
The Perseus Arm is the closest Galactic spiral arm from the Sun, offering an excellent opportunity to study in detail its stellar population. However, its distance has been controversial with discrepancies by a factor of two. Kinematic distances are in the range 3.9-4.2 kpc as compared to 1.9-2.3 kpc from spectrophotometric and trigonometric parallaxes, reinforcing previous claims that this arm exhibits peculiar velocities. We used the astrometric information of a sample of 31 OB stars from the star-forming W3 Complex to identify another 37 W3 members and to derive its distance from their Gaia-DR2 parallaxes with improved accuracy. The Gaia-DR2 distance to the W3 Complex,2.14$^{+0.08}_{-0.07}$ kpc, coincides with the previous stellar distances of $sim$ 2 kpc. The Gaia-DR2 parallaxes tentatively show differential distances for different parts of the W3 Complex: W3 Main, located to the NE direction, is at 2.30$^{+0.19}_{-0.16}$ kpc, the W3 Cluster (IC 1795), in the central region of the complex, is at 2.17$^{+0.12}_{-0.11}$ kpc, and W3(OH) is at 2.00$^{+0.29}_{-0.23}$ kpc to the SW direction. The W3 Cluster is the oldest region, indicating that it triggered the formation of the other two star-forming regions located at the edges of an expanding shell around the cluster.
173 - X. Luri , M. Palmer , F. Arenou 2014
Aims: An effort has been undertaken to simulate the expected Gaia Catalogue, including the effect of observational errors. A statistical analysis of this simulated Gaia data is performed in order to better understand what can be obtained from the Gaia astrometric mission. This catalogue is used in order to investigate the potential yield in astrometric, photometric and spectroscopic information, and the extent and effect of observational errors on the true Gaia Catalogue. This article is a follow-up to Robin et. al. (2012), where the expected Gaia Catalogue content was reviewed but without the simulation of observational errors. Methods: The Gaia Object Generator (GOG) catalogue is analysed using the Gaia Analysis Tool (GAT), producing a number of statistics on the catalogue. Results: A simulated catalogue of one billion objects is presented, with detailed information on the 523 million individual single stars it contains. Detailed information is provided for the expected errors in parallax, position, proper motion, radial velocity, photometry in the four Gaia bands, and physical parameter determination including temperature, metallicity and line of sight extinction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا