Do you want to publish a course? Click here

Compound redistribution due to droplet evaporation on a thin polymeric film: theory

109   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A thin polymeric film in contact with a fluid body may leach low-molecular-weight compounds into the fluid. If this fluid is a small droplet, the compound concentration within the liquid increases due to ongoing leaching in combination with the evaporation of the droplet. This may eventually lead to an inversion of the transport process and a redistribution of the compounds within the thin film. In order to gain an understanding of the compound redistribution, we apply a macroscopic model for the evaporation of a droplet and combine that with a diffusion model for the compound transport. In the model, material deposition and the resulting contact line pinning are associated with the precipitation of a fraction of the dissolved material. We find three power law regimes for the size of the deposit area as a function of the initial droplet size, dictated by the competition between evaporation, diffusion and the initial compound concentrations in the droplet and the thin film. The strength of the contact line pinning determines the deposition profile of the precipitate, characterised by a pronounced edge and a linearly decaying profile towards the centre of the stain. Our predictions for the concentration profile within the solid substrate resemble patterns found experimentally.



rate research

Read More

When a drop of water is placed on a rough surface, there are two possible extreme regimes of wetting: the one called Cassie-Baxter (CB) with air pockets trapped underneath the droplet and the one characterized by the homogeneous wetting of the surface, called the Wenzel (W) state. A way to investigate the transition between these two states is by means of evaporation experiments, in which the droplet starts in a CB state and, as its volume decreases, penetrates the surfaces grooves, reaching a W state. Here we present a theoretical model based on the global interfacial energies for CB and W states that allows us to predict the thermodynamic wetting state of the droplet for a given volume and surface texture. We first analyze the influence of the surface geometric parameters on the droplets final wetting state with constant volume, and show that it depends strongly on the surface texture. We then vary the volume of the droplet keeping fixed the geometric surface parameters to mimic evaporation and show that the drop experiences a transition from the CB to the W state when its volume reduces, as observed in experiments. To investigate the dependency of the wetting state on the initial state of the droplet, we implement a cellular Potts model in three dimensions. Simulations show a very good agreement with theory when the initial state is W, but it disagrees when the droplet is initialized in a CB state, in accordance with previous observations which show that the CB state is metastable in many cases. Both simulations and theoretical model can be modified to study other types of surface.
217 - Xiansong Shi , Lei Wang , Nina Yan 2021
Membranes derived from ultrathin polymeric films are promising to meet fast separations, but currently available approaches to produce polymer films with greatly reduced thicknesses on porous supports still faces challenges. Here, defect-free ultrathin polymer covering films (UPCFs) are realized by a facile general approach of rapid solvent evaporation. By fast evaporating dilute polymer solutions, we realize ultrathin coating (~30 nm) of porous substrates exclusively on the top surface, forming UPCFs with a block copolymer of polystyrene-block-poly(2-vinyl pyridine) at room temperature or a homopolymer of poly(vinyl alcohol) (PVA) at elevated temperatures. With subsequent selective swelling to the block copolymer and crosslinking to PVA, the resulting bi-layered composite structures serve as highly permeable membranes delivering ~2-10 times higher permeability in ultrafiltration and pervaporation applications than state-of-the-art separation membranes with similar rejections and selectivities. This work opens up a new, facile avenue for the controllable fabrication of ultrathin coatings on porous substrates, which shows great potentials in membrane-based separations and other areas.
We present results on the leveling of polymer microdroplets on thin films prepared from the same material. In particular, we explore the crossover from a droplet spreading on an infinitesimally thin film (Tanners law regime) to that of a droplet leveling on a film thicker than the droplet itself. In both regimes, the droplets excess surface area decreases towards the equilibrium configuration of a flat liquid film, but with a different power law in time. Additionally, the characteristic leveling time depends on molecular properties, the size of the droplet, and the thickness of the underlying film. Flow within the film makes this system fundamentally different from a droplet spreading on a solid surface. We thus develop a theoretical model based on thin film hydrodynamics that quantitatively describes the observed crossover between the two leveling regimes.
We study the dewetting of liquid films capped by a thin elastomeric layer. When the tension in the elastomer is isotropic, circular holes grow at a rate which decreases with increasing tension. The morphology of holes and rim stability can be controlled by changing the boundary conditions and tension in the capping film. When the capping film is prepared with a biaxial tension, holes form with a non-circular shape elongated along the high tension axis. With suitable choice of elastic boundary conditions, samples can even be designed such that square holes appear.
The performance of solution-processed solar cells strongly depends on the geometrical structure and roughness of the photovoltaic layers formed during film drying. During the drying process, the interplay of crystallization and liquid-liquid demixing leads to the structure formation on the nano- and microscale and to the final rough film. In order to better understand how the film structure can be improved by process engineering, we aim at theoretically investigating these systems by means of phase-field simulations. We introduce an evaporation model based on the Cahn-Hilliard equation for the evolution of the fluid concentrations coupled to the Allen-Cahn equation for the liquid-vapour phase transformation. We demonstrate its ability to match the experimentally measured drying kinetics and study the impact of the parameters of our model. Furthermore, the evaporation of solvent blends and solvent-vapour annealing are investigated. The dry film roughness emerges naturally from our set of equations, as illustrated through preliminary simulations of spinodal decomposition and film drying on structured substrates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا