The dualism between superconductivity and charge/spin modulations (the so-called stripes) dominates the phase diagram of many strongly-correlated systems. A prominent example is given by the Hubbard model, where these phases compete and possibly coexist in a wide regime of electron dopings for both weak and strong couplings. Here, we investigate this antagonism within a variational approach that is based upon Jastrow-Slater wave functions, including backflow correlations, which can be treated within a quantum Monte Carlo procedure. We focus on clusters having a ladder geometry with $M$ legs (with $M$ ranging from $2$ to $10$) and a relatively large number of rungs, thus allowing us a detailed analysis in terms of the stripe length. We find that stripe order with periodicity $lambda=8$ in the charge and $2lambda=16$ in the spin can be stabilized at doping $delta=1/8$. Here, there are no sizable superconducting correlations and the ground state has an insulating character. A similar situation, with $lambda=6$, appears at $delta=1/6$. Instead, for smaller values of dopings, stripes can be still stabilized, but they are weakly metallic at $delta=1/12$ and metallic with strong superconducting correlations at $delta=1/10$, as well as for intermediate (incommensurate) dopings. Remarkably, we observe that spin modulation plays a major role in stripe formation, since it is crucial to obtain a stable striped state upon optimization. The relevance of our calculations for previous density-matrix renormalization group results and for the two-dimensional case is also discussed.