We present a method for the simultaneous observation of heteronuclear multi-quantum coherences (up to the 3rd order), which give an additional degree of freedom for ultralow magnetic field (ULF) MR experiments, where the chemical shift is negligible. The nonequilibrium spin state is generated by Signal Amplification By Reversible Exchange (SABRE) and detected at ULF with SQUID-based NMR. We compare the results obtained by the heteronuclei Correlated SpectroscopY (COSY) with a Flip Angle FOurier Series (FAFOS) method. COSY allows a quantitative analysis of homo- and heteronuclei quantum coherences.
The ability to generate and verify multipartite entanglement is an important benchmark for near-term quantum devices devices. We develop a scalable entanglement metric based on multiple quantum coherences, and demonstrate experimentally on a 20-qubit superconducting device - the IBM Q System One. We report a state fidelity of 0.5165$pm$0.0036 for an 18-qubit GHZ state, indicating multipartite entanglement across all 18 qubits. Our entanglement metric is robust to noise and only requires measuring the population in the ground state; it can be readily applied to other quantum devices to verify multipartite entanglement.
The rates at which classical and quantum information can be simultaneously transmitted from two spatially separated senders to a single receiver over an arbitrary quantum channel are characterized. Two main results are proved in detail. The first describes the region of rates at which one sender can send classical information while the other sends quantum information. The second describes those rates at which both senders can send quantum information. For each of these situations, an example of a channel is given for which the associated region admits a single-letter description. This is the authors Ph.D. dissertation, submitted to the Department of Electrical Engineering at Stanford University in March, 2005. It represents an expanded version of the paper quant-ph/0501045, containing a number of tutorial chapters which may be of independent interest for those learning about quantum Shannon theory.
A phenomenological theory of spin-lattice relaxation of multiple-quantum coherences in systems of two dipolar coupled spins at low temperatures is developed. Intensities of multiple-quantum NMR coherences depending on the spin-lattice relaxation time are obtained. It is shown that the theory is also applicable to finite spin chains when the approximation of nearest neighbour interaction is used. An application of this theory to an estimation of the influence of decoherence processes on quantum entanglement and its fluctuations is briefly discussed.
We present a protocol to achieve double quantum magnetometry at large static magnetic fields. This is a regime where sensitive sample parameters, such as the chemical shift, get enhanced facilitating their characterization. In particular, our method delivers two-tone stroboscopic radiation patterns with modulated Rabi frequencies to achieve larger spectral signals. Furthermore, it does not introduce inhomogeneous broadening in the sample spectrum preventing signal misinterpretation. Moreover, our protocol is designed to work under realistic conditions such as the presence of moderate microwave power and errors on the radiation fields. Albeit we particularise to nitrogen vacancy centers, our protocol is general, thus applicable to distinct quantum sensors.
We describe the construction of a fast field cycling device capable of sweeping a 4-order-of-magnitude range of magnetic fields, from ~1mT to 7T, in under 700ms. Central to this system is a high-speed sample shuttling mechanism between a superconducting magnet and a magnetic shield, with the capability to access arbitrary fields in between with high resolution. Our instrument serves as a versatile platform to harness the inherent dichotomy of spin dynamics on offer at low and high fields - in particular, the low anisotropy, fast spin manipulation, and rapid entanglement growth at low field as well as the long spin lifetimes, spin specific control, and efficient inductive measurement possible at high fields. Exploiting these complementary capabilities in a single device open up applications in a host of problems in quantum control, sensing, and information storage, besides in nuclear hypepolarization, relaxometry and imaging. In particular, in this paper, we focus on the ability of the device to enable low-field hyperpolarization of 13C nuclei in diamond via optically pumped electronic spins associated with Nitrogen Vacancy (NV) defect centers.
K. Buckenmaier
,K. Scheffler
,M. Plaumann
.
(2019)
.
"Simultaneous observation of high order multiple quantum coherences at ultralow magnetic fields"
.
Kai Buckenmaier
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا