Do you want to publish a course? Click here

Estimating the effect of PEG in ALS patients using observational data subject to censoring by death and missing outcomes

80   0   0.0 ( 0 )
 Added by Qi Long
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Though they may offer valuable patient and disease information that is impossible to study in a randomized trial, clinical disease registries also require special care and attention in causal inference. Registry data may be incomplete, inconsistent, and subject to confounding. In this paper we aim to address several analytical issues in estimating treatment effects that plague clinical registries such as the Emory amyotrophic lateral sclerosis (ALS) Clinic Registry. When attempting to assess the effect of a surgical insertion of a percutaneous endoscopic gastrostomy (PEG) tube on body mass index (BMI) using the data from the ALS Clinic Registry, one must combat issues of confounding, censoring by death, and missing outcome data that have not been addressed in previous studies of PEG. We propose a causal inference framework for estimating the survivor average causal effect (SACE) of PEG, which incorporates a model for generalized propensity scores to correct for confounding by pre-treatment variables, a model for principal stratification to account for censoring by death, and a model for the missing data mechanism. Applying the proposed framework to the ALS Clinic Registry Data, our analysis shows that PEG has a positive SACE on BMI at month 18 post-baseline; our results likely offer more definitive answers regarding the effect of PEG than previous studies of PEG.



rate research

Read More

No unmeasured confounding is often assumed in estimating treatment effects in observational data when using approaches such as propensity scores and inverse probability weighting. However, in many such studies due to the limitation of the databases, collected confounders are not exhaustive, and it is crucial to examine the extent to which the resulting estimate is sensitive to the unmeasured confounders. We consider this problem for survival and competing risks data. Due to the complexity of models for such data, we adapt the simulated potential confounders approach of Carnegie et al. (2016), which provides a general tool for sensitivity analysis due to unmeasured confounding. More specifically, we specify one sensitivity parameter to quantify the association between an unmeasured confounder and the treatment assignment, and another set of parameters to quantify the association between the confounder and the time-to-event outcomes. By varying the magnitudes of the sensitivity parameters, we estimate the treatment effect of interest using the stochastic EM and the EM algorithms. We demonstrate the performance of our methods on simulated data, and apply them to a comparative effectiveness study in inflammatory bowel disease (IBD).
Estimation of individual treatment effect in observational data is complicated due to the challenges of confounding and selection bias. A useful inferential framework to address this is the counterfactual (potential outcomes) model which takes the hypothetical stance of asking what if an individual had received both treatments. Making use of random forests (RF) within the counterfactual framework we estimate individual treatment effects by directly modeling the response. We find accurate estimation of individual treatment effects is possible even in complex heterogeneous settings but that the type of RF approach plays an important role in accuracy. Methods designed to be adaptive to confounding, when used in parallel with out-of-sample estimation, do best. One method found to be especially promising is counterfactual synthetic forests. We illustrate this new methodology by applying it to a large comparative effectiveness trial, Project Aware, in order to explore the role drug use plays in sexual risk. The analysis reveals important connections between risky behavior, drug usage, and sexual risk.
The analysis of data arising from environmental health studies which collect a large number of measures of exposure can benefit from using latent variable models to summarize exposure information. However, difficulties with estimation of model parameters may arise since existing fitting procedures for linear latent variable models require correctly specified residual variance structures for unbiased estimation of regression parameters quantifying the association between (latent) exposure and health outcomes. We propose an estimating equations approach for latent exposure models with longitudinal health outcomes which is robust to misspecification of the outcome variance. We show that compared to maximum likelihood, the loss of efficiency of the proposed method is relatively small when the model is correctly specified. The proposed equations formalize the ad-hoc regression on factor scores procedure, and generalize regression calibration. We propose two weighting schemes for the equations, and compare their efficiency. We apply this method to a study of the effects of in-utero lead exposure on child development.
Randomized controlled trials (RCTs) are increasingly prevalent in education research, and are often regarded as a gold standard of causal inference. Two main virtues of randomized experiments are that they (1) do not suffer from confounding, thereby allowing for an unbiased estimate of an interventions causal impact, and (2) allow for design-based inference, meaning that the physical act of randomization largely justifies the statistical assumptions made. However, RCT sample sizes are often small, leading to low precision; in many cases RCT estimates may be too imprecise to guide policy or inform science. Observational studies, by contrast, have strengths and weaknesses complementary to those of RCTs. Observational studies typically offer much larger sample sizes, but may suffer confounding. In many contexts, experimental and observational data exist side by side, allowing the possibility of integrating big observational data with small but high-quality experimental data to get the best of both. Such approaches hold particular promise in the field of education, where RCT sample sizes are often small due to cost constraints, but automatic collection of observational data, such as in computerized educational technology applications, or in state longitudinal data systems (SLDS) with administrative data on hundreds of thousand of students, has made rich, high-dimensional observational data widely available. We outline an approach that allows one to employ machine learning algorithms to learn from the observational data, and use the resulting models to improve precision in randomized experiments. Importantly, there is no requirement that the machine learning models are correct in any sense, and the final experimental results are guaranteed to be exactly unbiased. Thus, there is no danger of confounding biases in the observational data leaking into the experiment.
Understanding the underlying causes of maternal death across all regions of the world is essential to inform policies and resource allocation to reduce the mortality burden. However, in many countries of the world there exists very little data on the causes of maternal death, and data that do exist do not capture the entire population of risk. In this paper we present a Bayesian hierarchical multinomial model to estimate maternal cause of death distributions globally, regionally and for all countries worldwide. The framework combines data from various sources to inform estimates, including data from civil registration and vital systems, smaller-scale surveys and studies, and high-quality data from confidential enquiries and surveillance systems. The framework accounts of varying data quality and coverage, and allows for situations where one or more causes of death are missing. We illustrate the results of the model on three case study countries that have different data availability situations: Canada, Nigeria and the United States.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا