Do you want to publish a course? Click here

Adaptive compressive tomography: a numerical study

228   0   0.0 ( 0 )
 Added by Yong Siah Teo
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform several numerical studies for our recently published adaptive compressive tomography scheme [D. Ahn et al. Phys. Rev. Lett. 122, 100404 (2019)], which significantly reduces the number of measurement settings to unambiguously reconstruct any rank-deficient state without any a priori knowledge besides its dimension. We show that both entangled and product bases chosen by our adaptive scheme perform comparably well with recently-known compressed-sensing element-probing measurements, and also beat random measurement bases for low-rank quantum states. We also numerically conjecture asymptotic scaling behaviors for this number as a function of the state rank for our adaptive schemes. These scaling formulas appear to be independent of the Hilbert space dimension. As a natural development, we establish a faster hybrid compressive scheme that first chooses random bases, and later adaptive bases as the scheme progresses. As an epilogue, we reiterate important elements of informational completeness for our adaptive scheme.



rate research

Read More

71 - D. Ahn , Y. S. Teo , H. Jeong 2018
Quantum state tomography is both a crucial component in the field of quantum information and computation, and a formidable task that requires an incogitably large number of measurement configurations as the system dimension grows. We propose and experimentally carry out an intuitive adaptive compressive tomography scheme, inspired by the traditional compressed-sensing protocol in signal recovery, that tremendously reduces the number of configurations needed to uniquely reconstruct any given quantum state without any additional a priori assumption whatsoever (such as rank information, purity, etc) about the state, apart from its dimension.
We present a compressive quantum process tomography scheme that fully characterizes any rank-deficient completely-positive process with no a priori information about the process apart from the dimension of the system on which the process acts. It uses randomly-chosen input states and adaptive output von Neumann measurements. Both entangled and tensor-product configurations are flexibly employable in our scheme, the latter which naturally makes it especially compatible with many-body quantum computing. Two main features of this scheme are the certification protocol that verifies whether the accumulated data uniquely characterize the quantum process, and a compressive reconstruction method for the output states. We emulate multipartite scenarios with high-order electromagnetic transverse modes and optical fibers to positively demonstrate that, in terms of measurement resources, our assumption-free compressive strategy can reconstruct quantum processes almost equally efficiently using all types of input states and basis measurement operations, operations, independent of whether or not they are factorizable into tensor-product states.
This review serves as a concise introductory survey of modern compressive tomography developed since 2019. These are schemes meant for characterizing arbitrary low-rank quantum objects, be it an unknown state, a process or detector, using minimal measuring resources (hence compressive) without any emph{a priori} assumptions (rank, sparsity, eigenbasis, emph{etc}.) about the quantum object. This article contains a reasonable amount of technical details for the quantum-information community to start applying the methods discussed here. To facilitate the understanding of formulation logic and physics of compressive tomography, the theoretical concepts and important numerical results (both new and cross-referenced) shall be presented in a pedagogical manner.
239 - J. Gil-Lopez , Y. S. Teo , S. De 2021
We implement a compressive quantum state tomography capable of reconstructing any arbitrary low-rank spectral-temporal optical signal with extremely few measurement settings and without any emph{ad hoc} assumptions about the initially unknown signal. This is carried out with a quantum pulse gate, a device that flexibly implements projections onto arbitrary user-specified optical modes. We present conclusive experimental results for both temporal pulsed modes and frequency bins, which showcase the versatility of our randomized compressive method and thereby introduce a universal optical reconstruction framework to these platforms.
We report an experimental realization of an adaptive quantum state tomography protocol. Our method takes advantage of a Bayesian approach to statistical inference and is naturally tailored for adaptive strategies. For pure states we observe close to 1/N scaling of infidelity with overall number of registered events, while best non-adaptive protocols allow for $1/sqrt{N}$ scaling only. Experiments are performed for polarization qubits, but the approach is readily adapted to any dimension.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا