The Total Variation Flow in Metric Random Walk Spaces


Abstract in English

In this paper we study the Total Variation Flow (TVF) in metric random walk spaces, which unifies into a broad framework the TVF on locally finite weighted connected graphs, the TVF determined by finite Markov chains and some nonlocal evolution problems. Once the existence and uniqueness of solutions of the TVF has been proved, we study the asymptotic behaviour of those solutions and, with that aim in view, we establish some inequalities of Poincar{e} type. In particular, for finite weighted connected graphs, we show that the solutions reach the average of the initial data in finite time. Furthermore, we introduce the concepts of perimeter and mean curvature for subsets of a metric random walk space and we study the relation between isoperimetric inequalities and Sobolev inequalities. Moreover, we introduce the concepts of Cheeger and calibrable sets in metric random walk spaces and characterize calibrability by using the $1$-Laplacian operator. Finally, we study the eigenvalue problem whereby we give a method to solve the optimal Cheeger cut problem.

Download