Do you want to publish a course? Click here

Cluster functional renormalization group and absence of a bilinear spin liquid in the $J_1$-$J_2$-Heisenberg model

57   0   0.0 ( 0 )
 Added by Dietrich Roscher
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The pseudofermion functional renormalization group (pf-FRG) has been put forward as a semi-analytical scheme that, for a given microscopic spin model, allows to discriminate whether the low-temperature states exhibit magnetic ordering or a tendency towards the formation of quantum spin liquids. However, the precise nature of the putative spin liquid ground state has remained hard to infer from the original (single-site) pf-FRG scheme. Here we introduce a cluster pf-FRG approach, which allows for a more stringent connection between a microscopic spin model and its low-temperature spin liquid ground states. In particular, it allows to calculate spatially structured fermion bilinear expectation values on spatial clusters, which are formed by splitting the original lattice into several sublattices, thereby allowing for the positive identification of a family of bilinear spin liquid states. As an application of this cluster pf-FRG approach, we consider the $J_1$-$J_2$ SU($N$)-Heisenberg model on a square lattice, which is a paradigmatic example for a frustrated quantum magnet exhibiting quantum spin liquid behavior for intermediate coupling strengths. In the well-established large-$N$ limit of this model, we show that our approach correctly captures the emergence of the $pi$-flux spin liquid state at low temperatures. For small $N$, where the precise nature of the ground state remains controversial, we focus on the widely studied case of $N=2$, for which we determine the low-temperature phase diagram near the strongly-frustrated regime after implementing the fermion number constraint by the flowing Popov-Fedotov method. Our results suggest that the $J_1$-$J_2$-Heisenberg model does not support the formation of a fermion bilinear spin liquid state.



rate research

Read More

The spin-1/2 $J_1$-$J_2$ Heisenberg model on square lattices are investigated via the finite projected entangled pair states (PEPS) method. Using the recently developed gradient optimization method combining with Monte Carlo sampling techniques, we are able to obtain the ground states energies that are competitive to the best results. The calculations show that there is no Neel order, dimer order and plaquette order in the region of 0.42 $lesssim J_2/J_1lesssim$ 0.6, suggesting a single spin liquid phase in the intermediate region. Furthermore, the calculated staggered spin, dimer and plaquette correlation functions all have power law decay behaviours, which provide strong evidences that the intermediate nonmagnetic phase is a single gapless spin liquid state.
We use the state-of-the-art tensor network state method, specifically, the finite projected entangled pair state (PEPS) algorithm, to simulate the global phase diagram of spin-$1/2$ $J_1$-$J_2$ Heisenberg model on square lattices up to $24times 24$. We provide very solid evidences to show that the nature of the intermediate nonmagnetic phase is a gapless quantum spin liquid (QSL), whose spin-spin and dimer-dimer correlations both decay with a power law behavior. There also exists a valence-bond solid (VBS) phase in a very narrow region $0.56lesssim J_2/J_1leq0.61$ before the system enters the well known collinear antiferromagnetic phase. We stress that our work gives rise to the first solid PEPS results beyond the well established density matrix renormalization group (DMRG) through one-to-one direct benchmark for small system sizes. Thus our numerical evidences explicitly demonstrate the huge power of PEPS for solving long-standing 2D quantum many-body problems. The physical nature of the discovered gapless QSL and potential experimental implications are also addressed.
206 - Bowen Zhao , Jun Takahashi , 2019
Liu et al. [Phys.Rev.B 98, 241109 (2018)] used Monte Carlo sampling of the physical degrees of freedom of a Projected Entangled Pair State (PEPS) type wave function for the $S=1/2$ frustrated $J_1$-$J_2$ Heisenberg model on the square lattice and found a non-magnetic state argued to be a gapless spin liquid when the coupling ratio $g=J_2/J_1$ is in the range $g in [0.42,0.6]$. Here we show that their definition of the order parameter for another candidate ground state within this coupling window---a spontaneously dimerized state---is problematic. The order parameter as defined will not detect dimer order when lattice symmeties are broken due to open boundaries or asymmetries originating from the calculation itself. Thus, a dimerized phase for some range of $g$ cannot be excluded (and is likely based on several other recent works).
93 - Shou-Shu Gong , Wei Zhu , 2015
Strongly correlated systems with geometric frustrations can host the emergent phases of matter with unconventional properties. Here, we study the spin $S = 1$ Heisenberg model on the honeycomb lattice with the antiferromagnetic first- ($J_1$) and second-neighbor ($J_2$) interactions ($0.0 leq J_2/J_1 leq 0.5$) by means of density matrix renormalization group (DMRG). In the parameter regime $J_2/J_1 lesssim 0.27$, the system sustains a N{e}el antiferromagnetic phase. At the large $J_2$ side $J_2/J_1 gtrsim 0.32$, a stripe antiferromagnetic phase is found. Between the two magnetic ordered phases $0.27 lesssim J_2/J_1 lesssim 0.32$, we find a textit{non-magnetic} intermediate region with a plaquette valence-bond order. Although our calculations are limited within $6$ unit-cell width on cylinder, we present evidence that this plaquette state could be a strong candidate for this non-magnetic region in the thermodynamic limit. We also briefly discuss the nature of the quantum phase transitions in the system. We gain further insight of the non-magnetic phases in the spin-$1$ system by comparing its phase diagram with the spin-$1/2$ system.
We investigate the magnetic properties of LiYbO$_2$, containing a three-dimensionally frustrated, diamond-like lattice via neutron scattering, magnetization, and heat capacity measurements. The stretched diamond network of Yb$^{3+}$ ions in LiYbO$_2$ enters a long-range incommensurate, helical state with an ordering wave vector ${bf{k}} = (0.384, pm 0.384, 0)$ that locks-in to a commensurate ${bf{k}} = (1/3, pm 1/3, 0)$ phase under the application of a magnetic field. The spiral magnetic ground state of LiYbO$_2$ can be understood in the framework of a Heisenberg $J_1-J_2$ Hamiltonian on a stretched diamond lattice, where the propagation vector of the spiral is uniquely determined by the ratio of $J_2/|J_1|$. The pure Heisenberg model, however, fails to account for the relative phasing between the Yb moments on the two sites of the bipartite lattice, and this detail as well as the presence of an intermediate, partially disordered, magnetic state below 1 K suggests interactions beyond the classical Heisenberg description of this material.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا