Do you want to publish a course? Click here

Learned Quality Enhancement via Multi-Frame Priors for HEVC Compliant Low-Delay Applications

251   0   0.0 ( 0 )
 Added by Ming Lu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Networked video applications, e.g., video conferencing, often suffer from poor visual quality due to unexpected network fluctuation and limited bandwidth. In this paper, we have developed a Quality Enhancement Network (QENet) to reduce the video compression artifacts, leveraging the spatial and temporal priors generated by respective multi-scale convolutions spatially and warped temporal predictions in a recurrent fashion temporally. We have integrated this QENet as a standard-alone post-processing subsystem to the High Efficiency Video Coding (HEVC) compliant decoder. Experimental results show that our QENet demonstrates the state-of-the-art performance against default in-loop filters in HEVC and other deep learning based methods with noticeable objective gains in Peak-Signal-to-Noise Ratio (PSNR) and subjective gains visually.

rate research

Read More

316 - Zhibo Chen , Jun Shi , Weiping Li 2019
In High Efficiency Video Coding (HEVC), excellent rate-distortion (RD) performance is achieved in part by having a flexible quadtree coding unit (CU) partition and a large number of intra-prediction modes. Such an excellent RD performance is achieved at the expense of much higher computational complexity. In this paper, we propose a learned fast HEVC intra coding (LFHI) framework taking into account the comprehensive factors of fast intra coding to reach an improved configurable tradeoff between coding performance and computational complexity. First, we design a low-complex shallow asymmetric-kernel CNN (AK-CNN) to efficiently extract the local directional texture features of each block for both fast CU partition and fast intra-mode decision. Second, we introduce the concept of the minimum number of RDO candidates (MNRC) into fast mode decision, which utilizes AK-CNN to predict the minimum number of best candidates for RDO calculation to further reduce the computation of intra-mode selection. Third, an evolution optimized threshold decision (EOTD) scheme is designed to achieve configurable complexity-efficiency tradeoffs. Finally, we propose an interpolation-based prediction scheme that allows for our framework to be generalized to all quantization parameters (QPs) without the need for training the network on each QP. The experimental results demonstrate that the LFHI framework has a high degree of parallelism and achieves a much better complexity-efficiency tradeoff, achieving up to 75.2% intra-mode encoding complexity reduction with negligible rate-distortion performance degradation, superior to the existing fast intra-coding schemes.
152 - Ren Yang , Mai Xu , Zulin Wang 2018
The past few years have witnessed great success in applying deep learning to enhance the quality of compressed image/video. The existing approaches mainly focus on enhancing the quality of a single frame, ignoring the similarity between consecutive frames. In this paper, we investigate that heavy quality fluctuation exists across compressed video frames, and thus low quality frames can be enhanced using the neighboring high quality frames, seen as Multi-Frame Quality Enhancement (MFQE). Accordingly, this paper proposes an MFQE approach for compressed video, as a first attempt in this direction. In our approach, we firstly develop a Support Vector Machine (SVM) based detector to locate Peak Quality Frames (PQFs) in compressed video. Then, a novel Multi-Frame Convolutional Neural Network (MF-CNN) is designed to enhance the quality of compressed video, in which the non-PQF and its nearest two PQFs are as the input. The MF-CNN compensates motion between the non-PQF and PQFs through the Motion Compensation subnet (MC-subnet). Subsequently, the Quality Enhancement subnet (QE-subnet) reduces compression artifacts of the non-PQF with the help of its nearest PQFs. Finally, the experiments validate the effectiveness and generality of our MFQE approach in advancing the state-of-the-art quality enhancement of compressed video. The code of our MFQE approach is available at https://github.com/ryangBUAA/MFQE.git
297 - Jiaming Liu , Yu Sun , 2019
We introduce a new algorithm for regularized reconstruction of multispectral (MS) images from noisy linear measurements. Unlike traditional approaches, the proposed algorithm regularizes the recovery problem by using a prior specified emph{only} through a learned denoising function. More specifically, we propose a new accelerated gradient method (AGM) variant of regularization by denoising (RED) for model-based MS image reconstruction. The key ingredient of our approach is the three-dimensional (3D) deep neural net (DNN) denoiser that can fully leverage spationspectral correlations within MS images. Our results suggest the generalizability of our MS-RED algorithm, where a single trained DNN can be used to solve several different MS imaging problems.
In this paper, we propose a Hierarchical Learned Video Compression (HLVC) method with three hierarchical quality layers and a recurrent enhancement network. The frames in the first layer are compressed by an image compression method with the highest quality. Using these frames as references, we propose the Bi-Directional Deep Compression (BDDC) network to compress the second layer with relatively high quality. Then, the third layer frames are compressed with the lowest quality, by the proposed Single Motion Deep Compression (SMDC) network, which adopts a single motion map to estimate the motions of multiple frames, thus saving bits for motion information. In our deep decoder, we develop the Weighted Recurrent Quality Enhancement (WRQE) network, which takes both compressed frames and the bit stream as inputs. In the recurrent cell of WRQE, the memory and update signal are weighted by quality features to reasonably leverage multi-frame information for enhancement. In our HLVC approach, the hierarchical quality benefits the coding efficiency, since the high quality information facilitates the compression and enhancement of low quality frames at encoder and decoder sides, respectively. Finally, the experiments validate that our HLVC approach advances the state-of-the-art of deep video compression methods, and outperforms the Low-Delay P (LDP) very fast mode of x265 in terms of both PSNR and MS-SSIM. The project page is at https://github.com/RenYang-home/HLVC.
Deep neural networks for image quality enhancement typically need large quantities of highly-curated training data comprising pairs of low-quality images and their corresponding high-quality images. While high-quality image acquisition is typically expensive and time-consuming, medium-quality images are faster to acquire, at lower equipment costs, and available in larger quantities. Thus, we propose a novel generative adversarial network (GAN) that can leverage training data at multiple levels of quality (e.g., high and medium quality) to improve performance while limiting costs of data curation. We apply our mixed-supervision GAN to (i) super-resolve histopathology images and (ii) enhance laparoscopy images by combining super-resolution and surgical smoke removal. Results on large clinical and pre-clinical datasets show the benefits of our mixed-supervision GAN over the state of the art.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا