Do you want to publish a course? Click here

On the convergence of the normal form transformation in discrete Rossby and drift wave turbulence

124   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study numerically the region of convergence of the normal form transformation for the case of the Charney-Hasagawa-Mima (CHM) equation to investigate whether certain finite amplitude effects can be described in normal coordinates. We do this by taking a Galerkin truncation of four Fourier modes making part of two triads: one resonant and one non-resonant, joined together by two common modes. We calculate the normal form transformation directly from the equations of motion of our reduced model, successively applying the algorithm to calculate the transformation up to $7^textrm{th}$ order to eliminate all non-resonant terms, and keeping up to $8$-wave resonances. We find that the amplitudes at which the normal form transformation diverge very closely match with the amplitudes at which a finite-amplitude phenomenon called $precession$ $resonance$ (Bustamante $et$ $al.$ 2014) occurs, characterised by strong energy transfers. This implies that the precession resonance mechanism cannot be explained using the usual methods of normal forms in wave turbulence theory, so a more general theory for intermediate nonlinearity is required.

rate research

Read More

We report results on the explicit parameterisation of discrete Rossby-wave resonant triads of the Charney-Hasegawa-Mima equation in the small-scale limit (i.e. large Rossby deformation radius), following up from our previous solution in terms of elliptic curves (Bustamante and Hayat, 2013). We find an explicit parameterisation of the discrete resonant wavevectors in terms of two rational variables. We show that these new variables are restricted to a bounded region and find this region explicitly. We argue that this can be used to reduce the complexity of a direct numerical search for discrete triad resonances. Also, we introduce a new direct numerical method to search for discrete resonances. This numerical method has complexity ${mathcal{O}}(N^3)$, where $N$ is the largest wavenumber in the search. We apply this new method to find all discrete irreducible resonant triads in the wavevector box of size $5000$, in a calculation that took about $10.5$ days on a $16$-core machine. Finally, based on our method of mapping to elliptic curves, we discuss some dynamical implications regarding the spread of quadratic invariants across scales via resonant triad interactions, in the form of sharp bounds on the size of the interacting wavevectors.
We consider the long-term dynamics of nonlinear dispersive waves in a finite periodic domain. The purpose of the work is to show that the statistical properties of the wave field rely critically on the structure of the discrete resonant manifold (DRM). To demonstrate this, we simulate the two-dimensional MMT equation on rational and irrational tori, resulting in remarkably different power-law spectra and energy cascades at low nonlinearity levels. The difference is explained in terms of different structures of the DRM, which makes use of recent number theory results.
We report on the observation of gravity-capillary wave turbulence on the surface of a fluid in a high-gravity environment. By using a large-diameter centrifuge, the effective gravity acceleration is tuned up to 20 times the Earth gravity. The transition frequency between the gravity and capillary regimes is thus increased up to one decade as predicted theoretically. A frequency power-law wave spectrum is observed in each regime and is found to be independent of the gravity level and of the wave steepness. While the timescale separation required by weak turbulence is well verified experimentally regardless of the gravity level, the nonlinear and dissipation timescales are found to be independent of the scale, as a result of the finite size effects of the system (large-scale container modes) that are not taken currently into account theoretically.
151 - Eric Falcon 2020
We report on the observation of surface gravity wave turbulence at scales larger than the forcing ones in a large basin. In addition to the downscale transfer usually reported in gravity wave turbulence, an upscale transfer is observed, interpreted as the inverse cascade of weak turbulence theory. A steady state is achieved when the inverse cascade reaches a scale in between the forcing wavelength and the basin size, but far from the latter. This inverse cascade saturation, which depends on the wave steepness, is probably due to the emergence of nonlinear dissipative structures such as sharp-crested waves.
We investigate experimentally turbulence of surface gravity waves in the Coriolis facility in Grenoble by using both high sensitivity local probes and a time and space resolved stereoscopic reconstruction of the water surface. We show that the water deformation is made of the superposition of weakly nonlinear waves following the linear dispersion relation and of bound waves resulting from non resonant triadic interaction. Although the theory predicts a 4-wave resonant coupling supporting the presence of an inverse cascade of wave action, we do not observe such inverse cascade. We investigate 4-wave coupling by computing the tricoherence i.e. 4-wave correlations. We observed very weak values of the tricoherence at the frequencies excited on the linear dispersion relation that are consistent with the hypothesis of weak coupling underlying the weak turbulence theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا