Diffusive limit for a Boltzmann-like equation with non-conserved momentum


Abstract in English

We consider a kinetic model whose evolution is described by a Boltzmann-like equation for the one-particle phase space distribution $f(x,v,t)$. There are hard-sphere collisions between the particles as well as collisions with randomly fixed scatterers. As a result, this evolution does not conserve momentum but only mass and energy. We prove that the diffusively rescaled $f^varepsilon(x,v,t)=f(varepsilon^{-1}x,v,varepsilon^{-2}t)$, as $varepsilonto 0$ tends to a Maxwellian $M_{rho, 0, T}=frac{rho}{(2pi T)^{3/2}}exp[{-frac{|v|^2}{2T}}]$, where $rho$ and $T$ are solutions of coupled diffusion equations and estimate the error in $L^2_{x,v}$.

Download