Direct visualization of ambipolar Mott transition in cuprate CuO2 planes


Abstract in English

Identifying the essence of doped Mott insulators is one of the major outstanding problems in condensed matter physics and the key to understanding the high-temperature superconductivity in cuprates. We report real space visualization of Mott transition in Sr1-xLaxCuO2+y cuprate films that cover the entire electron- and hole-doped regimes. Tunneling conductance measurements directly on the cooper-oxide (CuO2) planes reveal a systematic shift in the Fermi level, while the fundamental Mott-Hubbard band structure remains unchanged. This is further demonstrated by exploring atomic-scale electronic response of CuO2 to substitutional dopants and intrinsic defects in a sister compound Sr0.92Nd0.08CuO2. The results could be better explained in the framework of self-modulation doping, similar to that in semiconductor heterostructures, and form a basis for developing any microscopic theories for cuprate superconductivity.

Download