Do you want to publish a course? Click here

Direct visualization of ambipolar Mott transition in cuprate CuO2 planes

142   0   0.0 ( 0 )
 Added by Can-Li Song Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Identifying the essence of doped Mott insulators is one of the major outstanding problems in condensed matter physics and the key to understanding the high-temperature superconductivity in cuprates. We report real space visualization of Mott transition in Sr1-xLaxCuO2+y cuprate films that cover the entire electron- and hole-doped regimes. Tunneling conductance measurements directly on the cooper-oxide (CuO2) planes reveal a systematic shift in the Fermi level, while the fundamental Mott-Hubbard band structure remains unchanged. This is further demonstrated by exploring atomic-scale electronic response of CuO2 to substitutional dopants and intrinsic defects in a sister compound Sr0.92Nd0.08CuO2. The results could be better explained in the framework of self-modulation doping, similar to that in semiconductor heterostructures, and form a basis for developing any microscopic theories for cuprate superconductivity.



rate research

Read More

Scanning tunneling microscopy and spectroscopy are utilized to study the atomic-scale structure and electronic properties of infinite-layer Sr0.94La0.06CuO2+y films prepared on SrRuO3-buffered SrTiO3(001) substrate by ozone-assisted molecular beam epitaxy. Incommensurate structural supermodulation with a period of 24.5{AA} is identified on the CuO2-terminated surface, leading to characteristic stripes running along the 45o direction with respect to the Cu-O-Cu bonds. Spatially resolved tunneling spectra reveal substantial inhomogeneity on a nanometer length scale and emergence of in-gap states at sufficient doping. Despite the Fermi level shifting up to 0.7 eV, the charge-transfer energy gap of the CuO2 planes remains fundamentally unchanged at different doping levels. The occurrence of the CuO2 superstructure is constrained in the surface region and its formation is found to link with oxygen intake that serves as doping agent of holes in the epitaxial films.
In a recent study Viskadourakis et al. discovered that extremely underdoped La_2CuO_(4+x) is a relaxor ferroelectric and a magnetoelectric material at low temperatures. It is further observed that the magnetoelectric response is anisotropic for different directions of electric polarization and applied magnetic field. By constructing an appropriate Landau theory, we show that a bi-quadratic magnetoelectric coupling can explain the experimentally observed polarization dependence on magnetic field. This coupling leads to several novel low-temperature effects including a feedback enhancement of the magnetization below the ferroelectric transition, and a predicted magnetocapacitive effect.
The cuprate high-temperature superconductors (HTSC) have been the subject of intense study for more than 30 years with no consensus yet on the underlying mechanism of the superconductivity. Conventional wisdom dictates that the mysterious and extraordinary properties of the cuprates arise from doping a strongly correlated antiferromagnetic (AFM) insulator (1,2). The highly overdoped cuprates$-$those beyond the dome of superconductivity (SC)--are considered to be conventional Fermi liquid metals (3). Here, we report the emergence of itinerant ferromagnetic order (FM) below 4K for doping beyond the SC dome in electron-doped La$_{2-x} $Ce$_x$CuO$_4$ (LCCO). The existence of this FM order is evidenced by negative, anisotopic and hysteretic magnetoresistance, hysteretic magnetization, and the polar Kerr effect, all of which are standard signatures of itinerant FM in metals (4,5). This surprising new result suggests that the overdoped cuprates are also influenced by electron correlations and the physics is much richer than that of a conventional Fermi liquid metal.
We investigate magnetoresistance of a square array of superconducting islands placed on a normal metal, which offers a unique tunable laboratory for realizing and exploring quantum many-body systems and their dynamics. A vortex Mott insulator where magnetic field-induced vortices are frozen in the dimples of the egg crate potential by their strong repulsion interaction is discovered. We find an insulator-to-metal transition driven by the applied electric current and determine critical exponents that exhibit striking similarity with the common thermodynamic liquid-gas transition. A simple and straightforward quantum mechanical picture is proposed that describes both tunneling dynamics in the deep insulating state and the observed scaling behavior in the vicinity of the critical point. Our findings offer a comprehensive description of dynamic Mott critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions.
Electron-phonon coupling (EPC) is one of the most common and fundamental interactions in solids. It not only dominates many basic dynamic processes like resistivity, thermal conductivity etc, but also provides the pairing glue in conventional superconductors. But in high-temperature superconductors (HTSC), it is still controversial whether or not EPC is in favor of paring. Despite the controversies, many experiments have provided clear evidence for EPC in HTSC. In this paper, we briefly review EPC in cuprate and iron-based superconducting systems revealed by Raman scattering. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different HTSC systems and possible factors affecting the strength. The comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in HTSC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا