Do you want to publish a course? Click here

Decision Procedure for the Existence of Two-Channel Prefix-Free Codes

81   0   0.0 ( 0 )
 Added by Hoover H. F. Yin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The Kraft inequality gives a necessary and sufficient condition for the existence of a single channel prefix-free code. However, the multichannel Kraft inequality does not imply the existence of a multichannel prefix-free code in general. It is natural to ask whatever there exists an efficient decision procedure for the existence of multichannel prefix-free codes. In this paper, we tackle the two-channel case of the above problem by relating it to a constrained rectangle packing problem. Although a general rectangle packing problem is NP-complete, the extra imposed constraints allow us to propose an algorithm which can solve the problem efficiently.



rate research

Read More

82 - Michael B. Baer 2006
In prefix coding over an infinite alphabet, methods that consider specific distributions generally consider those that decline more quickly than a power law (e.g., Golomb coding). Particular power-law distributions, however, model many random variables encountered in practice. For such random variables, compression performance is judged via estimates of expected bits per input symbol. This correspondence introduces a family of prefix codes with an eye towards near-optimal coding of known distributions. Compression performance is precisely estimated for well-known probability distributions using these codes and using previously known prefix codes. One application of these near-optimal codes is an improved representation of rational numbers.
We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor which characterizes the convergence of the conditional output distributions corresponding to different messages and leads to an upper bound on the information leakage. We not only introduce the notion of secrecy-good lattices, but also propose the {flatness factor} as a design criterion of such lattices. Both the modulo-lattice Gaussian channel and the genuine Gaussian channel are considered. In the latter case, we propose a novel secrecy coding scheme based on the discrete Gaussian distribution over a lattice, which achieves the secrecy capacity to within a half nat under mild conditions. No textit{a priori} distribution of the message is assumed, and no dither is used in our proposed schemes.
In this paper, we perform a threshold analysis of braided convolutional codes (BCCs) on the additive white Gaussian noise (AWGN) channel. The decoding thresholds are estimated by Monte-Carlo density evolution (MC-DE) techniques and compared with approximate thresholds from an erasure channel prediction. The results show that, with spatial coupling, the predicted thresholds are very accurate and quickly approach capacity if the coupling memory is increased. For uncoupled ensembles with random puncturing, the prediction can be improved with help of the AWGN threshold of the unpunctured ensemble.
Zero-error single-channel source coding has been studied extensively over the past decades. Its natural multi-channel generalization is however not well investigated. While the special case with multiple symmetric-alphabet channels was studied a decade ago, codes in such setting have no advantage over single-channel codes in data compression, making them worthless in most applications. With essentially no development since the last decade, in this paper, we break the stalemate by showing that it is possible to beat single-channel source codes in terms of compression assuming asymmetric-alphabet channels. We present the multi-channel analog of several classical results in single-channel source coding, such as that a multi-channel Huffman code is an optimal tree-decodable code. We also show some evidences that finding an efficient construction of multi-channel Huffman codes may be hard. Nevertheless, we propose a suboptimal code construction whose redundancy is guaranteed to be no larger than that of an optimal single-channel source code.
We exploit the redundancy of the language-based source to help polar decoding. By judging the validity of decoded words in the decoded sequence with the help of a dictionary, the polar list decoder constantly detects erroneous paths after every few bits are decoded. This path-pruning technique based on joint decoding has advantages over stand-alone polar list decoding in that most decoding errors in early stages are corrected. In order to facilitate the joint decoding, we first propose a construction of dynamic dictionary using a trie and show an efficient way to trace the dictionary during decoding. Then we propose a joint decoding scheme of polar codes taking into account both information from the channel and the source. The proposed scheme has the same decoding complexity as the list decoding of polar codes. A list-size adaptive joint decoding is further implemented to largely reduce the decoding complexity. We conclude by simulation that the joint decoding schemes outperform stand-alone polar codes with CRC-aided successive cancellation list decoding by over 0.6 dB.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا